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5.1 Dimensiondim

The dimension of a variety can be defined either as a transcendence degree or as the maximal length of a

chain of closed subvarieties (see 5.1.3). We use transcendence degree to define the dimension, and we show

that it gives the same answer as the one that would be obtained with chains of subvarieties.

The dimension of a variety X is the transcendence degree over C of its function field, and the dimension

of a finite-type domain A is the transcendence degree of its fraction field. Thus if X = SpecA, then

dimX = dimA

5.1.1. Corollary.dimequal If Y
u

−→ X is the inclusion of an open subvariety or if it is an integral morphism, then

dimY = dimX . �

If C is a proper closed subvariety of an affine variety X , some regular function on X will vanish on C.

Because of this, C will have lower dimension than X . But it isn’t obvious how much lower its dimension will

be. A subtle fact known as Krull’s Theorem helps to determine the drop in dimension.

The codimension of a closed subvariety C of a variety X is the difference dimX − dimC of their dimen-

sions.

5.1.2. Krull’s Principal Ideal Theorem.krullthm Let X = SpecA be an affine variety of dimension n, and let f be

a nonzero element of A. Every irreducible component of the zero locus VX(f) has codimension 1.

proof. Step 1: The case of affine space. Let A be the polynomial ring C[x1, ..., xn], let X = SpecA, and let

f be a nonzero element of A. When we factor f into irreducible polynomials, say f = f1 · · · fk, then because

C[x] is a unique factorization domain, the ideals (fi) will be prime ideals. The irreducible components of the

zero locus VX(f) will be the zero sets VX(fi). We may assume that f is irreducible.

We adjust coordinates so that f becomes a monic polynomial in xn with coefficients in C[x1, . . . , xn−1],
say f = xk

n + ck−1x
k−1
n + · · ·+ c0 (Lemma 4.2.8). Then A = A/(f) will be integral over C[x1, . . . , xn−1],

so it will have transcendence degree n− 1, and VX(f) = SpecA will have codimension 1.

We now consider the general case. We suppose that VX(f) has a component D of dimension k, and we

show that k = n− 1.
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Step 2: Let Z be the union of the components of VX(f) distinct from D. We eliminate Z by localizing. We

choose an element s in A that is identically zero on Z, but not identically zero on D. Then the localization Xs

contains points of D, but no point of Z. The dimensions of the localizations Xs and Ds will be the same as

the dimensions of X and D. We replace X by Xs and D by Ds.

Step 3: We suppose D = VX(f) is irreducible, and that it has dimension k, and we apply the Noether

Normalization Theorem. There is a polynomial subring R = C[x1, ..., xn] over which A is a finite module.

Let F and K be the fraction fields of R and A, respectively. Then K is a finite extension of F that we may

embed into a Galois extension K1 of F . Let A1 be the integral closure of A in K1. Then A1 is also the integral

closure of R in K1. Let S = SpecR, X1 = SpecA1, and let W1 be the zero loci of f in X1. Since the

morphism X1 → X is integral, W1 maps surjectively to D. Every component D1 of W1 lies over a subvariety

of D, though not necessarily over D itself. So every component of W1 will have dimension at most k, and at

least one component will have dimension equal to k. We replace A, X , and D by A1, X1, and W1. The set

W1 isn’t necessarily irreducible, but the important point is that all of its components have dimension at most

k, and that at least one has dimension k. So we may assume that K is a Galois extension of F . We drop the

subscript 1.

Step 4: Let G be the Galois group of K over F , and let f1, ..., fr be the G-orbit of f , with f = f1. The

elements fi are integral over R, and the product g = f1 · · · fr is in F . Since R is integrally closed, g is in R.

We will show that the zero locus V = VS(g) is the image of W = VX(f). Then since X is integral over S,

every component C of V will be the image of a component D of W , and the dimensions of C and D will be

equal. According to Step 1, every component of V has codimension 1. Therefore D and C have dimension

n− 1. This will show that k = n− 1.

Let p be a point of V , and let q be a point of X that lies over p. Then g(q) = g(p) = 0. Since g = f1 · · · fr,

fi(q) = 0 for some i. The elements fi form an orbit, so fi = σf1 for some σ in G. Let πq denote the

homomorphism A → C that corresponds to q, as usual. Then (2.8.2)

0 = fi(q) = πq(fi) = πq(σf1) = πqσ(f1) = f1(qσ)

Since q lies over p, so does q′ = qσ. Since f(q′) = 0, q′ is in W . Therefore p is in the image of W . �

(5.1.3) chains of subvarietieschains

A chain of subvarieties of X of length k is a strictly decreasing sequence

(5.1.4) C0 > C1 > C2 > · · · > Ckchntwo

of closed subvarieties. This chain is maximal if it cannot be lengthened by inserting another closed subvariety,

which means that C0 = X , that for i < k there is no closed subvariety C̃ with Ci > C̃ > Ci+1, and that Ck

is a point.

Maximal chains in P
2 have the form P

2 > C > p, where C is a plane curve and p is a point. The chain

P
n > P

n−1 > · · · > P
0

in which P
k is the set of points (x0, ..., xk, 0, ..., 0) of Pn is a maximal chain of closed subvarieties of Pn.

5.1.5. Lemma.restrictchain Let X ′ be an open subvariety of a variety X . There is a bijective correspondence between

chains C0 > · · · > Ck of closed subvarieties of X such that Ck ∩ X ′ 6= ∅ and chains C ′

0 > · · · > C ′

k of

closed subvarieties of X ′, defined by C ′

i = Ci ∩X ′. Given a chain C ′

i in X ′, the corresponding chain in X
consists of the closures Ci of the varieties C ′

i in X .

proof. Suppose given a chain {Ci} and that Ck ∩X ′ 6= ∅. Then the intersections C ′

i = Ci ∩X ′ are nonempty

for all i, so they are dense open subsets of the irreducible closed sets Ci (2.7.6). The closure of C ′

i is Ci. Since

Ci is irreducible and Ci > Ci+1, it is also true that C ′

i is irreducible and C ′

i > C ′

i+1. Therefore C ′

0 > · · · > C ′

k

is a chain of closed subsets of X ′. Conversely, if C ′

0 > · · · > C ′

k is a chain in X ′, the closures in X form a

chain in X (see Corollary 2.7.8). �

5.1.6. Lemma.codimdim A closed subvariety C of a variety X has codimension 1 if and only if X > C and there is no

closed subvariety C̃ such that X > C̃ > C.

2



proof. Say that dimX = n. As Lemma 5.1.5 shows, we may assume X affine. We may also assume that

X > C. Then there will be a regular nonzero function f that vanishes on C. Since C is irreducible, it will be

contained in a component C̃ of the zero locus of f , and by Krull’s Theorem, C̃ will have codimension 1. If C
has codimension greater than 1, then X > C̃ > C. For the converse, suppose that there is a closed subvariety

C̃ of X such that X > C̃ > C. Then C̃ will have codimension at least 1. We apply Krull’s Theorem to

C̃. There will be a nonzero regular function g on C̃ that vanishes on C, and then C will be contained in a

component of the zero locus of g, which will have codimension 1 in C̃. Then C will have codimension at least

2 in X . �

5.1.7. Corollary.contcodi-

mone

Every proper closed subvariety of a variety X is contained in a closed subvariety of

codimension 1. �

5.1.8. Theorem.dimtheorem Let X be a variety of dimension n. All chains of closed subvarieties of X have length at

most n, and all maximal chains have length n.

proof. Induction allows us to assume the theorem true for a variety of dimension less than n, and the case

n = 0 is trivial.

Let X be a variety of dimension n. Lemma 5.1.5 shows that we may assume X affine, say X = SpecA.

Let C0 > C1 > · · · > Ck be a chain in X . We are to show that k ≤ n and that k = n if the chain is maximal.

We can insert closed subvarieties into the chain where possible, so we may assume that C0 = X and that C1

has codimension 1, and dimension n− 1.

By induction, the length of the chain C1 > · · · > Ck, which is k − 1, is at most n − 1, and is equal

to n − 1 if it is a maximal chain in C1. Lemma 5.1.6 shows that this happens if and only if the given chain

C0 > C1 > · · · > Ck is maximal in X . �

5.1.9. Corollary.dimless If Y is a proper closed subvariety of a variety X , then dimY < dimX . �

Theorem 5.1.8 can also be stated in terms of prime ideals. A chain (5.1.4) in X = SpecA will correspond

to an increasing chain

(5.1.10) P0 < P1 < P2 < · · · < Pk,chn

of prime ideals of A of length k, a prime chain. This prime chain is maximal if it cannot be lengthened by

inserting another prime ideal, which means that P0 is the zero ideal, that for i < k there is no prime ideal P̃
with Pi < P̃ < Pi+1, and that Pk is a maximal ideal. In terms of prime chains, Theorem 5.1.8 is this:

5.1.11. Corollary.dimtheo-

remtwo

Let A be a finite-type domain of transcendence degree n. All prime chains in A have length

at most n, and all maximal prime chains have length equal to n. �

For example, the polynomial algebra C[x1, . . . , xn] in n variables has transcendence degree n, and there-

fore it has dimension n. The chain of prime ideals

(5.1.12) 0 < (x1) < (x1, x2) < · · · < (x1, . . . , xn)primechain

is a maximal prime chain.

A prime ideal P of a noetherian domain has codimension 1 if it is not the zero ideal, and if there is no

prime ideal P̃ such that (0) < P̃ < P . Krull’s Theorem shows that the prime ideals of codimension 1 in the

polynomial algebra C[x1, . . . , xn] are the principal ideals generated by irreducible polynomials.

5.2 Localization II

locring
If s is a nonzero element of a domain A, the simple localization As is the ring obtained by adjoining an

inverse of a nonzero element s. To work with the inverses of finitely many nonzero elements, one may simply

adjoin the inverse of their product.

For working with an infinite set of inverses, the concept of a multiplicative system is useful. A multiplica-

tive system S in a domain A is a subset that consists of nonzero elements, is closed under multiplication, and

contains 1. If S is a multiplicative system, the ring of S-fractions AS−1. It is also called a localization of A.

This localization is the ring obtained by inverting all elements of S. Its elements are equivalence classes of

fractions as−1 with a in A and s in S, the equivalence relation and the laws of composition being the usual

ones for fractions.
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5.2.1. Examples.inverseex-

amples

(i) The set consisting of the powers of a nonzero element s is a multiplicative system. The

ring of fractions of this system is the simple localization As = A[s−1].

(ii) When S is the set of all nonzero elements of A, the localization AS−1 is the field of fractions of A.

(iii) Let P be a prime ideal of A. The complement of P in A is a multiplicative system.

If s1 and s2 aren’t in P , then because P is a prime ideal, the product s1s2 isn’t in P either. The unit element

1 isn’t in P because P isn’t the unit ideal. In fact, an ideal is a prime ideal if and only if its complement is a

multiplicative system. �

5.2.2. Proposition.extendide-

altoloc

Let S be a multiplicative system in a domain A, and let A′ denote the localization AS−1.

(i) Let I be an ideal of A. The extended ideal IA′ is the set IS−1 whose elements are classes of fractions

xs−1, with x in I and s in S. The extended ideal is the unit ideal if and only if I contains an element of S.

(ii) Let J be an ideal of A′ and let I denote its contraction J ∩A. The extended ideal IA′ is equal to J:

(iii) If P is a prime ideal of A and if P ∩ S is empty, the extended ideal P ′ = PA′ is a prime ideal of A′, and

its contraction P ′ ∩A is P . If P ∩ S isn’t empty, the extended ideal is the unit ideal. �

Thus J = extend(contract(J)), and I ⊂ contract(extend(I)).

Part (iii) tells us that prime ideals of A′ correspond bijectively to prime ideals of A that don’t meet S.

5.2.3. Corollary.locfintype A localization AS−1 of a noetherian domain A is noetherian. �

5.2.4. Note.importprinc An elementary, but important, principle for working with fractions is that any finite sequence

of computations in a localization AS−1 will involve only finitely many denominators, and can therefore be

done in a simple localization As, where s is a common denominator for the fractions that occur. The next

proposition makes use of this principle.

5.2.5. Proposition.localnthe-

orem

Let A ⊂ B be finite-type domains. There is a nonzero element s in A such that Bs is

a finite module over a subring of the form As[y1, ..., yr], whose elements are polynomials with coefficients in

As.

proof. Let S be the set of nonzero elements of A, so that AS−1 is the fraction field K of A, and let BK =
BS−1. Then BK is a finite-type K-algebra. It is generated as K-algebra by a set β1, ..., βr that generates

the finite-type C-algebra B. The Noether Normalization Theorem tells us that BK is a finite module over a

polynomial subring K[y1, ..., yr]. Then B is an integral extension of this polynomial ring.

Any element b of B will be in BK , and therefore it will be the root of a monic polynomial of the form

f(x) = xn + cn−1(y)x
n−1 + · · ·+ c0(y) = 0

whose coefficients cj(y) are elements of K[y]. Each cj(y) is a combination of finitely many monomials in

y, with coefficients in K. If s ∈ A is a common denominator for those coefficients, then cj(x) will have

coefficients in As[y].

We may choose a common denominator s for any finite set of elements of K. Since the generators β1, ..., βr

of the algebra B are integral over k[y], we may choose s so that all of those elements are integral over As[y].
The algebra Bs is generated over As by those elements, so it will be an integral extension of As. �

(5.2.6)localrings local rings

A local ring R is a noetherian ring that contains just one maximal ideal M . A local ring will have a

quotient field k = R/M , called the residue field of R.

We make a few comments about local rings here, though we will use mainly some special local rings,

discrete valuation rings, that will be discussed in the next section.

5.2.7. Lemma.nonunitideal A noetherian ring R is a local ring if and only if the set of elements of R that aren’t units is

an ideal.
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proof. If R is a local ring with maximal ideal M and s is an element of R not in M , then s isn’t in any maximal

ideal, so it is a unit. And because M isn’t the unit ideal, its elements aren’t units. Conversely, suppose that the

set M of non-units of a ring R is an ideal. Then the unit ideal is the only larger ideal, so M is a maximal ideal.

Moreover, if an ideal of R isn’t the unit ideal, then its elements aren’t units, so it is contained in M . So M is

the only maximal ideal. �

Let P be a prime ideal of a noetherian domain A, and let S be the complement of P . The ring of S-

fractions is a local ring called the local ring of A at P . Thee are various notations for this local ring, one being

AP , though this notation conflicts badly with the notation As for A[s−1]. The elements of P are the ones that

are not inverted in the local ring AP , while in As it is the element s that is inverted. To make matters even

more confusing: If p is a point of an affine variety X = SpecA, the local ring of A at the maximal ideal mp

is also often denoted by Ap. Thus if S = A−mp, then Amp
, Ap, and AS−1 are three notations for the same

local ring.

5.2.8. Corollary.primelocal There is a bijective correspondence between prime ideals of the localization of A at P and

prime ideals of A that are contained in P . �

5.2.9. Example.localizepolyring (localization of the polynomial ring A = C[x, y])

Let m be the maximal ideal of A at the origin p in A
2 = SpecA. A polynomial g is in m if and only if

g(0, 0) = 0. So the elements of the local ring Am are fractions of polynomials fg−1, with g(0, 0) 6= 0.

The prime ideals of Am are the extensions of the prime ideals of A that are contained in m. Those prime

ideals are: the zero ideal, the ideal m itself, and the principal ideals fA generated by irreducible polynomials

such that f(0, 0) = 0 – the ideals of affine curves C that contain the origin.

Let’s denote the set of prime ideals of Am by Xp. When one passes from X to Xp all points except the

origin p and all curves that don’t contain p disappear. If a curve C contains p, all points except p are gone in

Xp, but the origin and what is left of the curve remain. Intuitively, one thinks of Xp as a neighborhood of the

origin in the plane. �

figure

The Nakayama Lemma has a version for local rings.

5.2.10. Local Nakayama Lemma.localnakayama Let R be a local ring with maximal ideal m and residue field k = R/m
and let V be a finite R-module.

(i) Let V = V/mV . If V = 0, then V = 0.

(ii) Let S = {v1, ..., vr} be a set of elements of V , whose residues v1, ..., vr span V . Then S spans V .

proof. (i) If V = 0, then V = mV , and there is an element z ∈ m such that 1− z annihilates V . Then 1− z is

not in m, so it is a unit. A unit annihilates V , and therefore V = 0.

(ii) Let W be the submodule of V spanned by S. Let the quotient C = V/W is a finite R-module. When we

tensor the exact sequence

0 → W → V → C → 0

with k, we obtain an exact sequence

W → V → C → 0

(See Proposition 0.7.6.) We are given that the image of W generates V . Therefore C = 0, and by (i), C = 0.

Therefore W = V . �

5.2.11. Corollary.generatem Let R be a local ring with maximal ideal m and residue field k. If the residues of a set

S = {v1, ..., vr} of elements of m span the k-vector space m/m2, then S spans m. �

5.3 Valuation Ringsdvr

A local domain R with maximal ideal M has dimension one if (0) and M are distinct, and are the only

prime ideals of R, or if (0) < M is a maximal prime chain in R. In this section, we describe the normal local

domains of dimension one. They are discrete valuation rings.
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Let K be a field, and let K× = K − {0}. A discrete valuation on K is a surjective map

(5.3.1) K× v
−→ Zdval

with these properties:

• v(ab) = v(a) + v(b), i.e., v is a group homomorphism, and

• v(a+ b) ≥ min{v(a), v(b)}, if a+ b 6= 0.

The word “discrete” refers to the fact that Z+ is a discrete ordered group. Other valuations exist and they are

interesting, but they seem less important, and we won’t use them. So to shorten terminology, we will refer to

a discrete valuation simply as a valuation.

Let k be a positive integer. If v is a valuation and if v(α) = k, then k is the order of zero of α, and if

v(α) = −k, then k is the order of pole of α (with respect to the valuation).

5.3.2. Lemma.valczero Let v be a valuation on a field K that contains the complex numbers. Then v(c) = 0 for all

nonzero complex numbers c. �

proof. This is true because C contains n th roots. The first property of a valuation shows that if γr = c, then

v(γ) = v(c)/n. The only integer that is divisible by every integer r is zero. �

The valuation ring R associated to a valuation v on a field K consists of the elements of K whose values

are non-negative, together with zero:

(5.3.3) R = {a ∈ K× | v(a) ≥ 0} ∪ {0}.valnring

Valuation rings are often called “discrete valuation rings”, but since we have dropped the word discrete from

the valuation, we drop it from the ring too.

5.3.4. Proposition.idealsin-

valring

Let R be the valuation ring of a valuation v on a field K.

(i) R is a local domain. Its maximal ideal M is the set of elements with positive value:

M = {a ∈ K | v(a) > 0}.

This is a principal ideal. It is generated by any element x such that v(x) = 1.

(ii) The units of R are the elements with value zero. Every nonzero element of K has the form xku, where u is

a unit and k is an integer.

(iii) Let N be an R-submodule of K, and assume that 0 < N < K. Then N = xkR for some k in Z. The

nonzero ideals of R are the powers Mk of M , with k ≥ 0. Therefore R is noetherian.

(iv) If R is a proper subring of a ring R′, then R′ = K. There is no ring R′ such that R < R′ < K.

proof. (ii) Let z be a nonzero element of K and let v(z) = k. Then, with x as in (i), x−kz is a unit in R, so

zR = xkR.

(iii) Let N be a nonzero submodule of K and suppose that the values of the elements of N are bounded below.

Then if k is the greatest lower bound of those values, N = xkR. If the values of the elements are not bounded

below, then N contains xkR for every k, and N = K.

(iv) This follows from (iii). �

5.3.5. Example.valsinCt The valuations of the field of rational functions in one variable correspond bijectively to

points of the projective line P
1.

proof. Let K denote the field C(t) of rational functions, and let a be a complex number. To define the valuation

va that corresponds to the point t = a of P1, we write a nonzero polynomial as p = (t − a)kh, where t − a
doesn’t divide h, and we define, va(p) = k. We define the value of a nonzero rational function p/q to be

va(p/q) = va(p) − va(q). You will be able to check that with this definition, va becomes a valuation. The

valuation that corresponds to the point at infinity of P1 is obtained by working with t−1 in place of t.
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The valuation ring associated to the valuation va is the localization of C[t] at the point t = a. Its elements

are fractions p/q such that t− a doesn’t divide q.

To complete the proof, we show that every valuation v of the field K = C(t) corresponds to a point of P1.

let R be the valuation ring of a valuation v. If v(t) < 0, then v(t−1) > 0. In that case we replace t by t−1. So

we may assume that t is an element of R, and therefore that C[t] ⊂ R.

The maximal ideal M of R isn’t zero. It contains a nonzero element of K, a fraction of polynomials.

Since C[t] ⊂ R, we can clear the denominator in this fraction, while staying in M . So M contains a nonzero

polynomial f . Since M is a prime ideal, it contains an irreducible factor of f , of the form t − a for some

complex number a. Then t− a is in M . But if c 6= a, then c− a isn’t in M , and so t− c isn’t in M either. It is

a unit of R. It follows that R contains the localization R0 of C[t] at the point t = a, which is a valuation ring.

There is no ring properly containing R0 except K, so R0 = R. �

5.3.6. Theorem.character-

izedvr

(i) A local domain R whose maximal ideal M is a nonzero principal ideal is a valuation

ring.

(ii) The discrete valuation rings are the normal local domains of dimension 1.

proof. (i) Say that M is a nonzero principal ideal, say xR. Let y be a nonzero element of R and let xk be the

largest power of x that divides y (4.1.3). Then y = uxk, where u is in R but not in M = xR. Since R is a local

ring, u is a unit. Then any nonzero element z of the fraction field K of R has the form z = vxr where r is a

positive or negative integer and v is a unit. This is seen by writing the numerator and denominator of a fraction

in such a form and dividing. The valuation whose valuation ring is R is defined by v(z) = r, where r is as

above. If zi = vix
ri , i = 1, 2, where vi is a unit and r1 ≤ r2, then z1 + z2 = αxr1 , where α = v1 + v2x

r2−r1

is an element of R. Therefore v(z1 + z2) ≥ r1 = min{v(z1), v(z2)}. The requirements for a valuation are

satisfied.

(ii) The normalization R′ of a discrete valuation ring R is a finite R-module contained in the fraction field K.

Since K isn’t a finite R-module, Proposition 5.3.4 (iii) shows that R = R′.

Conversely, let R be a normal local domain of dimension 1. We show that R is a valuation ring by showing

that the maximal ideal of R is a principal ideal. Let α be a nonzero element of M . Because R has dimension

1, M is the only prime ideal that contains α, so M is the radical of the principal ideal αR, and Mr ⊂ αR for

large r. Let r be the smallest such integer. Then r > 0. If r = 1, then M = αR so M is a principal ideal.

If r > 1, there is an element β in Mr−1 such that β 6∈ αR, but βM ⊂ αR. Let γ = β/α. Then γ 6∈ R, but

γM ⊂ R. Since M is an ideal, multiplication by an element of R carries γM to itself. So γM is an ideal too.

Since R is a local ring with maximal ideal M , either γM ⊂ M or γM = R. If γM ⊂ M , the lemma elow

shows that γ is integral over R. This is impossible because R is normal and γ 6∈ R. Therefore γM = R. Then

M = γ−1R. This implies that γ−1 is in R, and that M is a principal ideal. �

5.3.7. Lemma.betaintegral Let I be a nonzero ideal of a noetherian domain A, and let B be a domain that contains A.

An element γ of B such that γI ⊂ I is integral over A.

proof. This is the Nakayama Lemma again. Because A is noetherian, I is finitely generated. Let v =
(v1, ..., vn)

t be a vector whose entries generate I . The hypothesis γI ⊂ I allows us to write γvi =
∑

pijvj
with pij in A, or in matrix notation, γv = Pv. Let p(t) be the characteristic polynomial of P . Then p(γ)v = 0.

Since I 6= 0, at least one vi is nonzero. Therefore, since A is a domain, p(γ) = 0. The characteristic

polynomial is a monic polynomial with coefficients in A, so γ is integral over A. �

5.4 Smooth Affine Curvessmaffcurve

A curve is a variety of dimension 1. Its proper closed subsets are the finite sets.

Let X = SpecA be an affine curve. A rational function is regular on X if and only if it is regular at every

point p, which means that it is in every every local ring Ap. But we also know that α is regular if and only if it

is an element of A (Proposition 3.4.3). Therefore the coordinate ring A of an affine curve X = SpecA is the

intersection of its localizations:

(5.4.1) A =
⋂

Ap (in K)intersectcodi-

monea-

gain In fact, this is true for any affine variety. consequence is that a domain A is normal if and only if all of its

localizations Ap are normal. (This follows from Lemma 4.3.3 (ii)).
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A point p of a curve X is a smooth point if the local ring at p is a valuation ring, and a curve is smooth if

all of its points are smooth. Thus an affine curve X is smooth if and only if its coordinate algebra is a normal

domain (Theorem 5.3.6).

If a curve X is smooth at p, we denote the the corresponding valuation by vp. The zeros Z and the poles P
of a rational function α on a smooth curve X are defined as the points p at which α has a zero or a pole, with

respect to the valuation vp.

5.4.2. Proposition.pointsvalns Let X = SpecA be a smooth affine curve. The localizations Ap of A at the points p of

X are the valuation rings of the fraction field K that contain A.

proof. First, the localization Ap at a point p is a valuation ring that contains A (Theorem 5.3.6). Let R be a

valuation ring of K that contains A, let v be the associated valuation, and let M be the maximal ideal of R.

The intersection M ∩ A is a prime ideal of A. Since A has dimension 1, the zero ideal is the only prime ideal

of A other than the maximal ideals. To verify that M ∩ A isn’t the zero ideal, we choose a nonzero element

α ∈ M , and write it as a fraction a/b, with a and b in A. Then v(a) ≥ v(α) > 0, so a = bα is a nonzero

element of M ∩A.

Since M ∩ A isn’t zero, it is the maximal ideal mp of A corresponding to a point p of X . The elements

of A not in mp aren’t in M either, and they are invertible in R. Therefore the local ring Ap, at p, which is a

valuation ring, is contained in R. So A = R (5.3.4 (iii)). �

5.4.3. Corollary.pointsofcurve Let X be a smooth curve, not necessarily affine, with function field K. Morphisms X → P
n

correspond bijectively to points of Pn with values in K.

proof. Let (α0, ..., αn) be a point of Pn with values in K. Proposition ?? tells us that α determines a morphism

X → P
n if and only if, for every point p of X , there is an index i such that the functions αj/αi are regular at

p for every j. The functions αj/αi will be regular at p when i is chosen so that the order of zero vp(αi) of αi

at p is minimal. �

This Corollary isn’t true in dimension greater than one. If X is the affine plane SpecC[x, y], its function

field K is the field C(x, y) of rational functions. The pair of functions x, y defines a point of P1 with values in

K, but not a morphism X → P
1. There is no way to extend the map to the origin.

5.4.4. Lemma.onezero Let X be a smooth affine curve with coordinate algebra A and function field K, and let p be

a point of X . There exists an element α in K with pole of order 1 at p and no other pole.

If the maximal ideal mp of A at p is a principal ideal, a generator t will have p as its only zero. Then t−1

will have p as its only pole, and it will have no zeros. If mp isn’t a principal ideal, the element we are looking

for will have some zeros as well as its single pole.

proof of the lemma. Let R denote the local ring Ap at p, and let t be an element of A that generates the maximal

ideal of R. Then t will have a zero of order 1 at p, and because X has dimension one, it will have finitely many

other zeros, say q1, ..., qr. There is an element z of A that is zero at q1, ..., qr but not zero at p. Then for large

n, znt−1 will be an element of K with a pole of order 1 at p, and no other pole. �

5.4.5. Proposition.truncatecurve Let X = SpecA be a smooth affine curve, and let m be the maximal ideal of A at a

point p of X . If I is an ideal whose radical is m, then I is a power mk of m.

proof. Let v be the valuation corresponding to the point p, and let R be the associated valuation ring, the local

ring of A at p. The nonzero ideals of R are powers of its maximal ideal M .

The maximal ideal m consists of the elements a of A with value v(a) ≥ 1. Therefore mr contains elements

that have value r, and all nonzero elements of mr have value at least r. Let k be the minimal value v(x) among

the nonzero elements x of I . Every nonzero element of I has value at least k. We will show that I is the set of

all elements y of A with v(y) ≥ k. Since we can apply the same reasoning to m
k, it will follow that I = m

k.

Let y be a nonzero element of A with v(y) ≥ k. Then since v(uy) ≥ v(x), x divides y in R. So we may

write y in the form y = s−1ax, where s, a are in A, and s 6∈ m. The element s will vanish at a finite set of

points q1, ..., qr distinct from p.

We choose an element s′ of A that vanishes at p but not at any of the points q1, ..., qr, and we look at the

localization As′ . The extended ideal mAs′ is the unit ideal. Since the radical of I is m, the localized ideal Is′
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is the unit ideal too. Therefore y is in It. We may write y = s′
−n

b for some b ∈ I . Since we can replace s′ by

a power, we may assume that y = s′
−1

b. We now have the two equations

sy = ax and s′y = b

among elements of A. By our choice, s′ and s have no common zeros in X = SpecA. They generate the unit

ideal of A. Writing us+ u′s′ = 1 with u, u′ in A, we have y = (us+ u′s′)y = uax+ u′b. The right side of

this equation is in I , so y is in I . �

5.4.6. Corollary.openaffine Every nonempty open subvariety X ′ of a smooth affine curve X is a smooth affine curve.

proof. A nonempty open subset of a curve is the complement of a finite set, so it will be enought to consider

the case of the open set X ′ obtained by deleting a single point p of X . Lemma 5.4.4 tells us that there is an

element α in K with a pole at p and no other pole. Let A1 denote the finite type domain A[α]. We show that

X1 = SpecA1 is isomorphic to X ′.

The inclusion A ⊂ A1 gives us a morphism X1
u

−→ X . If q is a point of X different from p, then α is an

element of the local ring Aq . Therefore A1 ⊂ Aq , and so there is a point q1 of X1 that maps to q. Since Aq is a

valuation ring, Aq = A1q1 (5.3.4 (iii). So q1 is the only point of X1 that lies over q. One the other hand, since

α 6∈ Ap but α ∈ A1, there is no point of X1 lying over p. So the map u sends X1 bijectively to X ′ = X−{p}.

The map is a homeomorphism simply because the proper closed sets in X1 and in X ′ are the finite sets. To

show that the inverse map X ′
v

−→ X1 is an isomorphism, we must show that if a rational function β is regular

at a point q1 of X1, then it is regular at q = v(q1) = u−1(q1). This is true because the local rings are equal. �

(5.4.7)jacob the Jacobian criterion

5.4.8. Proposition.smoothcurvedef Let X = SpecA be an affine curve with coordinate algebra A = C[x1, ..., xn]/(f1, ..., fk).

A point p of X is smooth if and only if the Jacobian matrix J = ∂fi
∂xj

has rank n− 1 at p.

We leave the proof as an exercise. �

This Jacobian criterion generalizes to higher dimension. An affine variety X of dimension d whose coor-

dinate algebra is presented as A = C[x1, ..., xn]/(f1, ..., fk) is smooth at a point p if and only if the Jacobian

matrix J = ∂fi
∂xj

, evaluated at p, has rank n − d. However, to apply this criterion, one needs to know the

dimension of X , and the dimension may not be easy to detrmine.

5.4.9. Example.twistcubic The twisted cubic X in P
3 is the curve whose points are (1, t, t2, t3) for t ∈ C together with

the point (0, 0, 0, 1). It is defined by the three homogeneous equations

(5.4.10) x0x3 = x1x2, x2
1 = x0x2, x2

2 = x1x3twistcubice-

quations

The zero locus of the first two equations is the union of the twisted cubic and the line L : x0 = x1 = 0, and

the last equation eliminates all points of the line except (0, 0, 0, 1). The rank of the Jacobian matrix is 2 at all

points of X , so X is a smooth projective curve. �

5.5 Nodes and Cusps II

nodecus-

patwo
We describe nodes and cusps of curves here. Nodes and cusps of plane curves were defined in Chapter ??.

Let p be a singular point of a curve X . For simplicity, let’s assume that X is affine and that p is its only

singular point. We can achieve this by localizing. Let k = k(p) be the residue field at p, and let X̃ = Spec Ã
be the normalization of X .

5.5.1. Definition.defnode The point p is a node or a cusp if and only if the A-module ǫ = Ã/A has dimension one

as complex vector space, i.e., if and only if ǫ is isomorphic, as module, to the residue field k = k(p). If ǫ has

dimension one, and if there are two points of X̃ lying over p, then p is called a node, while if there is just one

point lying over p, then p is called a cusp.
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5.5.2. Lemma.twopoints If ǫ has dimension one, the quotient algebra Ã/mÃ has dimension two. Therefore there are at

most two points of X̃ that lie over p.

proof. It is convenient to form a diagram in which m denotes the maximal ideal of A at p and k = A/m denotes

the residue field at p:

(5.5.3)

0 0 0
y

y
y

0 −−−−→ m −−−−→ mÃ −−−−→ mǫ −−−−→ 0
y

y
y

0 −−−−→ A −−−−→ Ã −−−−→ ǫ −−−−→ 0
y

y
y

0 −−−−→ k
i

−−−−→ Ã/mÃ −−−−→ ǫ/mǫ −−−−→ 0
y

y
y

0 0 0

AoA

The middle row and all three columns are exact. Since ǫ is isomorphic to k, mǫ = 0 and therefore ǫ ≈ ǫ/mǫ.

The Snake Lemma, applied to the first two columns, shows that m ≈ mÃ, and that all rows are exact. Then

the bottom row shows that Ã⊗A k has dimension 2. �

5.5.4. Proposition.describenode (i) Suppose that p is a node, and let q1 and q2 be the points of X̃ over p. Then A is the

subalgebra of Ã of elements α such that α(q1) = α(q2).

(ii) Suppose that p is a cusp. Let m̃ be the maxmial ideal of Ã at the point q of X̃ over p. Then A is the

subalgebra k + m̃
2 of Ã.

proof.(i) Let A′ be the subalgebra of Ã of elements α such that α(q1) = α(q2). It is obvious that A ⊂ A′, and

that A′ < Ã. Since ǫ has dimension one, A = A′.

(ii) The only maximal ideal of Ã that contains m is the maximal ideal m̃ at the single point p̃ that lies over

p. Therefore the radical of the ideal mÃ is m̃, and mÃ is a power of m̃ (Proposition 5.4.5). Since Ã/mÃ has

dimension 2, mÃ = m̃
2. �

5.6 Constructible Setsconstruct

In this section, X denotes a noetherian topological space. Every strictly decreasing chain of closed subsets

of X is finite, and every closed subset is a union of finitely many irreducible closed sets.

The intersection L = C ∩ U of a closed subset C and an open subset U of X is a locally closed set. For

instance, closed subsets and open subsets are locally closed. A subset is constructible if it is the union of

finitely many locally closed sets.

In this section we use the following notation: L is locally closed, C is closed, and U is open.

5.6.1. Example.constrincurve A subset S of a curve X is constructible if and only if it is either a finite set or the comple-

ment of a finite set. Thus S is constructible if and only if it is either closed or open, in which case it is locally

closed. �

The proofs of the next two theorems are elementary topology, but they are confusing enough to require

care.

5.6.2. Theorem.deflocclosed The set S of constructible subsets of a noetherian topological space X is the smallest set of

subsets that contains the open sets and is closed under the three operations of finite union, finite intersection,

and complementation.
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proof. Let S1 denote the set of subsets that is obtained from the open sets by the three operations mentioned

in the statement. Open sets are constructible, and with those operations, one can produce any constructible set

from the open sets. So S ⊂ S1.

To show that S = S1, we show that the constructible sets are closed under the three operations. It is obvious

that a finite union of constructible sets is constructible. The intersection of two locally closed sets L1 = C1∩U1

and L2 = C2 ∩ U2 is locally closed because L1 ∩ L2 = (C1 ∩ C2) ∩ (U1 ∩ U2). If S = L1 ∪ · · · ∪ Lk and

S′ = L′

1 ∪ · · · ∪ L′

r are constructible sets, the intersection S ∩ S′ is equal to the union
⋃
(Li ∩ L′

j), so it is

constructible.

To show that the complement SC of a constructible set S is constructible, it suffices to show that the

complement of a locally closed set is constructible. For, if S = L1 ∪ · · · ∪Lk, then SC = LC
1 ∩ · · · ∩LC

k , and

we know now that intersections of constructible sets are constructible. Let L be the locally closed set C ∩ U ,

and let V = CC and Y = UC be the complements of C and U , respectively. Then V is open and Y is closed.

The complement LC of L is the union V ∪ Y of constructible sets, so it is constructible. �

5.6.3. Theorem.containsopen (i) Every constructible set S is a union L1 ∪ · · · ∪ Lk of locally closed sets Li = Ci ∩ Ui,

in which the closed sets Ci are irreducible and distinct.

(ii) Let S be the closure of a nonempty constructible set S. There is a nonempty locally closed subset L′ of S
that is an open subset of S.

proof. (i) Suppose that a locally closed set L has the form C∩U , and let C = C1∪· · ·∪Cr be the decomposition

of C into irreducible components. Then L = (C1 ∩U)∪ · · · ∪ (Cr ∩U). So if a constructible set S is written

as a union L1 ∪ · · · ∪Lk, we can replace each Li by a union of locally closed sets of the form C ∩U , where C
is irreducible. Next, say that C1 = C2. Then L1 ∪ L2 = (C1 ∩ U1) ∪ (C1 ∩ U2) = C1 ∩ (U1 ∩ U2) is locally

closed. So we can find an expression in which the irreducible closed sets are Ci distinct.

(ii) Say that S = L1 ∪ · · · ∪ Lk and that Li = Ci ∩ Ui, where the sets Ci are irreducible and distinct. The

closure of S is the union S = C1 ∪ · · · ∪Ck. We choose an index i, say i = 1, so that C1 isn’t contained in Ci

for i > 1, and we let Z = C2 ∪ · · · ∪Ck be the union of the remaining sets Ci. Let V be the open complement

of Z in X , and let W = S ∩ V . Every point of W lies in C1, so it is also true that W = C1 ∩ V . Therefore

W is an open subset of C1 and of S. It is nonempty because it contains the points of C1 that aren’t in Z. Let

L′ = L1 ∩W = (C1 ∩ U1) ∩ (C1 ∩ V ) = (C1 ∩ C2) ∩ (U1 ∩ U2)

This is an intersection of nonempty open subsets of C1, and is therefore a nonempty locally closed set whose

closure is C1. Since L1 is open in C1, L′ is open in W , and therefore open in C1 and in S. Since L′ ⊂ L1 ⊂ S,

L′ is the required subset. �

5.6.4. Proposition.sinx (i) Let X ′ be an open or a closed subvariety of a variety X . A subset S of X ′ is a

constructible subset of X ′ if and only if it is a constructible subset of X .

(ii) Let S be a subset of a variety X , let Y be a closed subset of X , and let V be the open complement of Y in

X . Then S is constructible if and only if S ∩ Y and S ∩ V are constructible.

proof. (i) Let L′ = C ′ ∩ U ′ be a locally closed subset of X ′, with C ′ closed and U ′ open in X ′. If X ′ is open

in X , then U ′ is also open in X , and if C denotes the closure of C ′ in X , L = C ∩ U ′. So L is locally closed

in X . Conversely, if L = C ∩U is locally closed in X , then L = C ′ ∩U , where C ′ = C ∩X ′ is closed in X ′.

If X ′ is closed in X , and if V is the complement of X ′ in X , then C ′ is closed in X , and L′ = C ′ ∩ (U ′ ∪ V ).
�

The next theorem illustrates a general principle: Sets that arise in algebraic geometry are often con-

structible.

5.6.5. Theorem.imageconstr Let Y
f

−→ X be a morphism of varieties.

(i) The inverse image of a constructible subset of X is a constructible subset of Y .

(ii) The image of a constructible subset of Y is a constructible subset of X .

proof. Part (i) follows directly from the fact that f is a continuous map. The proof of (i) is brutal. One hammers

away until there is nothing left to do.

Let S be a constructible subset of Y .
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Step 1: Suppose that Y is the union of finitely many subvarieties, which may be open or closed, and let

Sj = S ∩ Yj . Then Sj are constructible and their union is S. It suffices to show that the image of each Sj

is constructible. Similarly, suppose that X is the union of finitely many open or closed subvarieties Xi. Let

Yi = f−1Xi and let Si = S ∩ Yi. It suffices to show that the image of each Si is constructible. Moreover,

Proposition 5.6.4 tells us that the image of Si is constructible in Xi if and only if it is constructible in X .

Step 2: Noetherian induction on Y and on X allows us to assume that the image f(S) is constructible if S is

contained in a proper closed subset of Y , or if f(S) is contained in a proper closed subset of X . Therefore we

may assume that Y is the closure of S and that X is the closure of f(S).

When we decompose X into a proper closed subvariety X1 and an open subvariety X2, and we decompose

Y by the inverse images Yi = f−1Xi, noetherian induction applies to the map Y1 → X . Similarly, when we

decompose Y in to a proper closed subvariety Y1 and an open subvariety Y2, noetherian induction applies to

the map Y1 → X . In either case, we may ignore Y1. This means that we may replace X by any nonempty

open subvariety X ′ and Y by any nonempty open subvariety of f−1X ′. We can do this finitely many times.

Step 3: Since Y is the closure of S, Theorem 5.6.3 (ii) tells us that S contains a nonempty open subset of

Y . We may replace Y by that subset. So it suffices to show that the image of Y itelf is constructible. And as

Step 2 shows, we may assume that the closure of f(Y ) is X .

W may still replace X and Y by nonempty open sets, so we may assume that X and Y are affine, say

X = SpecA, Y = SpecB, and that the morphism f corresponds to the algebra homomorphism A
ϕ

−→ B. If

the kernel of ϕ were a nonzero (prime) ideal P , the image of Y would be contained in a proper closed subset

of X . We have taken care of that case. So ϕ is injective.

Corollary 5.2.5 tells us that, for suitable nonzero s in A, Bs is a finite module over a polynomial subring

As[y]. Then both of the maps Ys → SpecAs[y] and SpecAs[y] → Xs are surjective, so Ys maps surjectively

to Xs. When we replace X and Y by Xs and Ys, the map becomes surjective, and we are done. �

5.7 Closed Setsusingcurves

Limits of sequences are often used to analyze subsets of a topological space. A metric space Y is closed in

the classical topology if, whenever a sequence of points in Y has a limit in R
n, the limit is in Y . In algebraic

geometry one uses morphisms from algebraic curves to Y as a substitute. We use the following notation to

state the analogue:

(5.7.1)Cwithpoint C is a smooth affine curve, and C ′ = C − q is the complement of a point q of C.

The (Zariski) closure of C ′ will be C, and we think of q as a limit point. Theorem 5.7.3, which is below,

asserts that a constructible subset Y of a variety X is closed if it contains all such limit points. It is based on

the next theorem, which states that there are enough curves to do the job.

5.7.2. Theorem.enoughcurves (there are enough curves) Let Y be a constructible subset of a variety X , and let p be a point

of its closure Y . There exist a morphism C
f

−→ X from a smooth curve to X and a point q of C such that

f(q) = p and f(C ′) ⊂ Y .

proof. The method is to use Krull’s Theorem to slice Y down to dimension 1.

If X = p, we may take for f the constant morphism from any curve C to p. So we may assume that X
has positive dimension d. Next, we may replace X by any affine open subset that contains p, and Y and Y by

their intersections with that open subset. So we may assume X affine, say X = SpecA.

Since Y is constructible, it is union L1 ∪ · · · ∪ Lk of locally closed sets Li = Ci ∩ Ui, where the closed

sets Ci are irreducible. The closure of Y is Y = C1 ∪ · · · ∪ Ck. Since p is in Y , it is in one of the closed sets

Ci. We may replace Y by Li and X by Ci, so we may assume that Y is a nonempty open subset of X .

Suppose that the dimension d of X is at least two. Let W = X − Y be the complement of Y in X . The

components of W have dimension at most d − 1. We choose a suitable element α ∈ A such that α(p) = 0:

We require that α isn’t identically zero on any component of W , except for p, if p happens to be a component.

Krull’s Theorem tells us that every component of the zero locus VX(α) of α has dimension d − 1, and at

least one of those components contains p. Let V be such a component. Since α isn’t identically zero on any
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component of W different from p, and since p has codimension at least two in X , V 6⊂ W . So V = V ∩ Y is

a nonempty open, and therefore dense, subset of V , and p is a point of its closure. We replace X by V and Y
by V , which reduces us to the case that the dimension of X is d− 1.

Thus it suffices to treat the case that X has dimension 1. Then X will be an affine curve that contains p.

Its normalization will be a smooth affine curve C1 that comes with a surjective morphism to X . Finitely many

points of C1 will map to p. We delete all but one of those points to obtain the required affine curve C. �

5.7.3. Theorem (curve criterion for a closed set)closedcrittwo Let Y be a constructible subset Y of a variety X . The

following conditions are equivalent:

(a) Y is a closed subset of X .

(b) Let C
f

−→ X be a morphism from a smooth affine curve to X . The inverse image f−1Y is closed in C.

(c) Let q be a point of a smooth affine curve C, let C ′ = C − {q}, and let C
f

−→ X be a morphism. If

f(C ′) ⊂ Y , then f(C) ⊂ Y .

The hypothesis that Y be constructible is necessary. The set Y of points of An with integer coordinates

isn’t constructible, but it satisfies the curve criterion. Any morphism C ′ → X whose image is in Y will map

C ′ to a single point, and therefore it will extend to C.

proof. The implications (a) ⇒ (b) ⇒ (c) are obvious. We prove the contrapositive of the remaining implication

(c) ⇒ (a). Suppose that Y isn’t closed. We choose a point p of the closure Y that isn’t in Y , and we apply

Theorem 5.7.2. There exists a morphism C
f

−→ X from a smooth curve to X and a point q of C such that

f(q) = p and f(C ′) ⊂ Y . This morphism shows that (c) doesn’t hold either. �

5.8 Fibred Products

fibprod
First, fibred products of sets. If X

f
−→ Z and Y

g
−→ Z are maps of sets, the fibred product X×ZY is the

subset of the product X × Y consisting of pairs of points x, y such that f(x) = g(y). The fibred product fits

into a diagram

(5.8.1)

X×ZY
πY−−−−→ Y

πX

y g

y

X
f

−−−−→ Z

fproddiagr

where πX and πY are the projections. The reason for the term “fibred product” is that each fibre of X×ZY
over a point of X maps bijectively to a fibre of Y over a point of Z.

Many important subsets of a product can be realized as fibred products. If p → Z is the inclusion of a

point into Z, then p×ZY is the fibre of Y over p. The product X ×X X is the diagonal in X×X .

Now, fibred products of varieties Since we are working with varieties and not with general schemes, we

have a small problem: A fibred product of varieties will always be a scheme, but it needn’t be a variety.

5.8.2. Example.example-

fibred-

product

Let X , Y and Z be affine lines, let X
f

−→ Z be the map z = x2, and let g be the map

z = y2. The fibred product X×Z Y is the closed subset of the affine x, y-plane consisting of the diagonal

x = y and the antidiagonal x = −y.

Rather than discussing schemes, we show that the fibred product of varieties is a (Zariski) closed subset of

the product X×Y . This will be enough for our purposes.

5.8.3. Proposition.fibprodclosed Let X
f

−→ Z and Y
g

−→ Z be morphisms of varieties. The fibred product X×ZY is a

closed subset of the product variety X×Y .

proof. Step 1. The graph Γf of a morphism X
f

−→ Z is a closed subvariety of X×Z that is isomorphic to X:

The graph can be represented as a fibred product by the diagram
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Γf −−−−→ X×Z
y

yf×id

Z∆
∆

−−−−→ Z×Z

where Z∆ is the diagonal, a closed subset of Z×Z. The map F×id is a morphism, and Γf is the inverse image

in X×Z of the closed subvariety Z∆ of X×X , so it is a closed subset of X×Z.

The projection of Γf to X is bijective. It is continuous because the projection X×Z
π

−→ X is a morphism.

Its inverse is obtained using the mapping property of product varieties (Proposition 3.1.16), which gives us a

morphism (id,f) : X−→X×Z, whose image is Γf . Therefore X and Γf are homeomorphic. This shows that

Γf is an irreducible closed set, and therefore a closed subvariety, of X×Z. The maps X → Γf and Γf → X
we have described are inverse morphisms, so Γf is isomorphic to X .

Step 2. Let u and v be two morphisms from a variety X to another variety z: X−→−→Z. The set W consisting

of points x in X such that u(x) = v(x) is closed in X: Let W ′ = Γu ∩Γv in X×Z. This is the intersection of

Γu with the closed set Γv , so W ′ is closed in Γu. The isomorphism Γu → X carries W ′ to W , so W is closed

in X .

Step 3: Completion of the proof. With reference to diagram 5.8.1, X×ZY is the subset of X×Y of points at

which the maps fπX and gπY to Z are equal. �

For reference in the next section, we derive a corollary of Theorem 5.7.2.

5.8.4. Corollary.liftcurve (lifting of curves) Let W
u

−→ Z and C
f

−→ Z be morphisms of varieties, where C is a

smooth affine curve. If the image f(C) is contained in the image u(W ), there is a smooth affine curve D that

fits into a diagram of morphisms

D
f ′

−−−−→ W

g

y u

y

C
f

−−−−→ Z

such that g isn’t a constant map – it isn’t the map from D to a single point.

In this corollary, we can’t require that the map g be surjective. Its image will be a nonempty open subset

of C.

proof. We form the fibred product C×ZW . Since f(C) is contained in u(W ), the projection from C×ZW
to C is surjective. At least one component of C×ZW will map to an open subset of C. We choose such a

component, call it W ′, and we project W ′ to its image, a nonempty open subset C ′ of C. Since the map g we

are looking for isn’t required to be surjective, replacing C by C ′ is permissible, and we do that. Then we are

looking for a smooth curve D and morphisms to complete the diagram below:

D −−−−→ W ′ −−−−→ W

g

y
yu′

yu

C
=

−−−−→ C −−−−→ Z

We replace the map W
u

−→ Z by W ′
u′

−→ C. This reduces us to the case that f is the identity map C → C.

When we drop the primes from W ′ and u′, the problem becomes this: Let W
u

−→ C be a surjective morphism

to a smooth affine curve C. There exists a smooth affine curve D and a morphism D
f ′

−→ W such that the

composed morphism D
uf ′

−→ C isn’t a constant map.

Let p1 be an arbitrary point of W , let p be its image in C, and let F be the fibre of the map u over p.

Theorem 5.7.2 shows that there is a map D
f ′

−→ W from a smooth affine curve D to W and a point q of D
such that f ′(q) = p1, and that the image of D′ = D − {q} is contained in the complement of F . This is the

required map. �
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5.9 Projective Varieties are Properproper

An important property of projective space is that, with its classical topology, it is compact, which means

that it has these two properties: It is a Hausdorff space: Distinct points p, q of X have disjoint open neighbor-

hoods, and it is quasicompact: If family {Xi} of open sets covers X , then a finite subfamily covers X .

The next theorem reviews two important properties of compact spaces.

5.9.1. Theorem.heineborel (i) (Heine-Borel Theorem) A subset of Rn is compact if and only if it is closed and bounded.

(ii) Let X
f

−→ Y be a continuous map of topological spaces. Suppose that X is a compact space and that

Y is a Hausdorff space. The image f(X) is a closed subset of Y , and with the topology induced from Y , the

image is compact. �

Let’s use this theorem to verify that Pn is compact. The five-dimensional sphere S of unit length vectors

in C
n+1 is bounded, and because it is the zero locus of the equation x0x0 + · · · + xnxn = 1, it is closed. So

it is compact. The map S → P
2 that sends a vector (x0, ..., xn) to the point of the projective plane with that

coordinate vector is continuous and surjective. So P
n is compact.

We saw in Section 2.7 that, in the Zariski topology, every variety is a notherian topological space. Conse-

quently, it is quasicompact. But a variety of dimension > 0 isn’t compact because it isn’t Hausdorff. We show

that projective varieties have a property closely related to compactness: They are proper.

Before defining proper varieties, we explain the analogous property of compact spaces.

5.9.2. Proposition.propercom-

pact

Let W be a closed subset of a product Z×X , where Z is a Hausdorff space and X is a

compact space. The image Y of W via projection to Z is a closed subset of Z.

proof. Let yi be a sequence of points of Y that has a limit y in Z. We show that y is a point of Y . For each i,
we choose a point wi of W that lies over yi. The point wi is a pair (yi, xi), xi being a point of X . Since X is

compact, there is a subsequence of xi that has a limit x in X . Passing to subsequences, we may suppose that

xi has limit x. Then wi has the limit (y, x). Since W is closed, (y, x) is in W , and therefore y is in Y . �

The property of this proposition defines proper varieties.

5.9.3. Definition.defproper A variety X is proper if for every variety Z and every closed subset W of the product

Z×X , the image Y of W via projection to Z is closed in Z.

Because the image of an irreducible subset is irreducible. the image of a closed subvariety Z of Y×X will

be a closed subvariety of Y , if X is proper.

5.9.4. Theorem.pnproper Projective varieties are proper.

This theorem is the most important application of the use of curves to characterize closed sets. Before

proving it, we give some examples which show how it is used.

5.9.5. Example.properex (singular curves) We assemble the plane curves of a given degree d into a variety. The

number of distinct monomials xi
0x

j
1x

k
2 of degree d = i+j+k is the binomial coefficient

(
d+2

2

)
. We order the

monomials arbitrarily, labeling them as m0, ...,mr, r =
(
d+2

2

)
− 1. A homogeneous polynomial of degree d

will be a combination of monomials with complex coefficients z0, ..., zr , so the homogeneous polynomials of

degree d, taken up to scalar factors, are parametrized by a projective space of dimension r that we denote by

Z. Points of Z correspond bijectively to divisors of degree d in the projective plane (see Section 1.3.5).

The product space Z × P
2 represents pairs (D, p), where D is a divisor of degree d and p is a point of P2.

The variable homogeneous polynomial f may be written as f(z, x). It is bihomogeneous, linear in z and of

degree d in x. So the locus Γ: {f(z, x) = 0} in Z × P
2 is a (Zariski) closed set whose points are pairs (D, p)

such that p is a point of the divisor D. The set Σ of pairs (D, p) such that p is a singular point of D is also

closed. It is defined by the system of equations f0(z, x) = f1(z, x) = f2(z, x) = 0, where fi is the partial

derivative, as usual. The partial derivatives fi are bihomogeneous, of degree 1 in z and degree d− 1 in x.

The next proposition isn’t easy to prove directly, but the proof becomes easy when one uses the fact that

projective space is proper.

15



5.9.6. Propositionsingclosed The singular divisors of degree d form a (Zariski) closed subset of the space Z of all

curves of degree d.

proof. Theorem 5.9.4 tells us that the image of the subset Σ via projection to Z is closed.. Its points correspond

to singular divisors. �

5.9.7. Example.surfaceline (surfaces that contain a line) We go back to the discussion of lines in a surface of Chapter

3. As in that discussion, let S denote the projective space that parametrizes surfaces of degree d in P
3.

5.9.8. Propositionsurfaceswith-

line

In P
3, the surfaces of degree d that contain a line form a closed subset of the space S.

proof. Let G be the Grassmanian G(2, 4) of lines in P
3, and let Ξ be the subset of G×S of pairs of pairs [ℓ], [S]

such that ℓ ⊂ S. Lemma 3.3.12 tells us that Ξ is a closed subset of G×S. Therefore its image W in S is closed.

�

We now procede with the proof of Theorem 5.9.4. We will need to tweak the curve criterion for closed sets

to prove it. We make use of Corollary 5.8.4 and the next lemma:

5.9.9. Lemma.curvecrit-

forpspace

Let q be a point of a smooth affine cuve C, and let C ′ = C − {q}. Every morphism

C ′
f ′

−→ P
nZ to a projective space extends uniquely to a morphism C

f
−→ P

n.

proof. Let K be the function field of C. The morphism f ′ gives us a point of Pn with values in K. Such points

correspond bijectively, both to morphisms C → P
n and to morphisms C ′ → P

n (see Corollary 5.4.3). �

proof of Theorem 5.9.4. We go back to the notation of Definition 5.9.3. We are given a diagram

W −−−−→ Z×X

σ

y
yπ

Y −−−−→ Z

in which X is a projective variety and W is a closed subset of Z×X . The set Y is the image of W in Z, and

the map σ is the restriction of π. We are to prove that Y is closed in Z. We may assume that X is a projective

space. Also, we know that Y is constructible. It is a union of locally closed sets Y1, ..., Yk. It suffices to show

that, for i = 1, ..., k, the closure Y i of Yi is contained in Y . Let W i = π−1(Y i). This is a closed subset

of Z × X . If W i maps surjectively to Y i for each i, then W maps surjectively to Y = Y 1 ∪ · · · ∪ Y k, and

therefore Y = Y . So it suffices to prove the theorem when Y is open in its closure.

We apply the curve criterion. Suppose given a morphism C
f

−→ X from a smooth affine curve to Z and

a point q of C such that the image of C ′ = C − {q} is contined in Y . We must show that f(q) lies in Y .

Corollary 5.8.4 tells us that there is a smooth affine curve D that fits into a diagram

D
f ′

−−−−→ W

g

y
yτ

C
f

−−−−→ Z

Let D̃ be the normalization of C in the function field of D. This smooth affine curve comes with an integral,

and therefore surjective, morphism D̃
g̃

−→ C.

We show that the morphism f ′ extends to a morphism D̃
f̃

−→ W : Let D̃
d

−→ Z denote the composed

morphism fg̃, and let D
h

−→ X be the morphism obtained by restriction from the projection Z×X → X .

Corollary 5.4.3 shows that h extends to a morphism D̃
h̃

−→ X . The pair of morphisms (d, h̃) defines a

morphism D̃ → Z×X that extends the morphism D → Z×X . Since the image of D is in the closed set W ,

so is the image of D̃. This gives us the morphism D̃
f̃

−→ W :
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D̃
f̃

−−−−→ W

g̃

y
yτ

C
f

−−−−→ Z

Since the map g̃ is surjective, the image of C is contained in the image Y of W . �

5.10 Fibre Dimensionsemicont

A function Y
δ

−→ Z from a variety to the integers is constructible if, for every integer n, the set of points

of Y such that δ(p) = n is constructible, and δ is upper semicontinuous if for every n, the set of points such

that δ(p) ≥ n is closed. For brevity, we may refer to an upper semicontinuous function as semicontinuous,

though the term is ambiguous. since a function might be lower semicontinuous.

If a function δ on a curve C is semicontinuous, it will be a constant c on a nonempty open subset U and its

value on points not in U will be greater or equal to c.

The next curve criterion for semicontinuous functions follows from the criterion for closed subvarieties.

5.10.1. Proposition. (curve criterion for semicontinuity)uppercrit A function Y
δ

−→ Z is semicontinuous if and only

if it is a constructible function, and for every morphism C
f

−→ Y from an affine curve C to Y , the composition

δ ◦ f is a semicontinuous function on C. �

Let Z be a closed subset of a variety X , and let p be a point of Z. The local dimension of Z at p is the

maximum dimension among the irreducible components of Z that contain p. For example, in P
3, let L be a

line that meets a plane H at a point p, and let Z = H ∪ L. The local dimension of Z at every point of H is 2,

and is 1 at points of L different from p.

Let Y
f

−→ X be a morphism, let q be a point of Y , and let F be the fibre of f over p = f(q). The fibre

dimension δ(q) of f at q is the local dimension of the fibre F at q.

5.10.2. Theorem. (semicontinuity of fibre dimension)uppersemi Let Y
u

−→ X be a morphism of varieties, and let δ(q)
denote the fibre dimension at a point q of Y .

(i) Suppose that X is a smooth curve, that Y has dimension n, and that u is not a constant map from Y to a

point of X . Then δ is the constant function n− 1: Every fibre has constant dimension equal to n− 1.

(ii) Suppose that the image of Y contains a nonempty open subset of X , and let the dimensions of X and Y be

m and n, respectively. There is a nonempty open subset X ′ of X such that δ(q) = n−m for every point q in

the inverse image of X ′.

(iii) δ is a semicontinuous function on Y .

The proof of this theorem makes a good exercise.
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