
Chapter 4 INTEGRAL MORPHISMS

4.1 The Nakayama Lemma

4.2 Integral Extensions

4.3 Finiteness of the Integral Closure

4.4 Geometry of Integral Morphisms

4.5 Chevalley’s Finiteness Theorem

4.6 Double Planes

The concept of an algebraic integer was one of the most important ideas contributing to the development

of algebraic number theory in the 19th century. Then in the 20th century, through the work of Noether and

Zariski, its analog became essential in algebraic geometry. We study this analog here. Some of the things we

discuss are:

If A ⊂ B are domains, an element of B is integral over A if it is the root of a monic polynomial with

coefficients in A, and B is an integral extension of A if every element of B is integral over A. If A and B
are finite-type domains and B is integral over A, then B is a finite A-module. The Noether Normalization

Theorem asserts that every finite-type domain is an integral extension of a polynomial ring.

Let K be the fraction field of a finite-type domain A. The normalization of A is the set of all elements of

K that are integral over A. The normalization is finite A-module.

A morphism Y
u

−→ X is a finite morphism if the inverse image Y ′ of every affine open set X ′ of X is an

affine open subset of Y that is integral over X ′. Thus if X ′ = SpecA and Y ′ = SpecB, B will be a finite

A-module. Chevalley’s Finiteness Theorem 4.5.2 asserts that if X and Y are projective and the fibres of u are

finite sets, then u is a finite morphism.

We study double planes in the last section, and we relate a cubic surface to a double plane whose branch

locus is a curve of degree 4. This allows us to determine the number of lines on a generic cubic surface in P
3.

Section 4.1 The Nakayama Lemma

(Tadasi Nakayama (1912-1964))

nakayama

It won’t be surprising that eigenvectors are important, but the way that they are used to study rings and modules

may be new to you.

Let P be an n × n matrix with entries in a ring A. As usual, the characteristic polynomial of P is

p(t) = det (tI − P ). The concept of an eigenvector for P makes sense when the entries of a vector are in

an A-module. A vector v = (v1, ..., vn)
t with entries in a module is an eigenvector of P with eigenvalue λ if

Pv = λv. The requirement that an eigenvector must be nonzero, which is customary in linear algebra, isn’t

very useful when the entries are in a module, so we drop it.

4.1.1. Lemma.eigenval Let p be the characteristic polynomial of an n× n matrix P . If v is an eigenvector of P with

eigenvalue λ, then p(λ)v = 0.

The usual proof, in which one multiplies the equation (λI−P )v = 0 by the cofactor matrix of λI−P , carries

over. �

Here is the most important application of this lemma.
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4.1.2. Nakayama Lemma.nakaya-

malem

Let M be a finite module over a ring A, and let J be an ideal of A. If M = JM ,

there is an element z in J such that m = zm for all m in M , or such (1− z)M = 0.

Since the inclusion M ⊃ JM is always true, the hypothesis M = JM can be replaced by M ⊂ JM ,

proof. Let v = (v1, ..., vn)
t be a vector with entries in M and whose entries generate M . The equation

M = JM tells us that there are elements pij in J such that vi =
∑

pijvj . In matrix notation, v = Pv. So

v is an eigenvector of P with eigenvalue 1, and p(1)v = 0. Since the entries of P are in J , inspection of the

matrix I−P shows that p(1) has the form 1−z, with z in J . Then (1−z)vi = 0 for all i, and since v1, ...., vn
generate, (1− z)M = 0. �

4.1.3. Corollary.idealzero Let A be a noetherian domain.

(i) If I and J are ideals of A and if I = JI , then either I is the zero ideal or J is the unit ideal.

(ii) Let J be an ideal of A that isn’t the unit ideal. The intersection
⋂

Jn of the powers of J is the zero ideal.

(iii) Let x and y be nonzero elements of a noetherian domain. The integers k such that xk divides y are

bounded.

proof. (i) Suppose that I = IJ . Since A is noetherian, I is a finite A-module. The Nakayama Lemma tells

us that there is an element z of J such that zx = x for all x in I . If I isn’t zero, we may choose a nonzero

element x of I and cancel x from the equation zx = x, to obtain z = 1. Then 1 is in J , and J is the unit ideal.

(ii) The intersection I =
⋂
Jn is an ideal, and it has the property that I = JI . Since J isn’t the unit ideal,

I = 0.

(iii) The intersection of the powers xkA of the ideal xA is the zero ideal. �

4.1.4. Corollary.extnotunit Let A ⊂ B be finite-type domains such that B is a finite A-module, and let J be an ideal

of A. If the extended ideal JB is the unit ideal of B, then J is the unit ideal of A.

proof. Suppose that JB = B. Since B is a finite A-module, the Nakayama Lemma applies. There is an

element z in J such that zb = b for all b in B. Since B is a domain, z = 1. So J is the unit ideal. �

4.1.5. Corollary.fracnotfinite Let A be a subring of a field K. If K is a finite A-module, then A is a field.

proof. Suppose that K is a finite A-module. Let x be nonzero element of A, and let J be the principal ideal

xA. Since x is invertible in K, JK = K. Therefore J is the unit ideal, which shows that x is invertible in A.

Every nonzero element of A is a unit, which means that A is a field. �

Since there are many subrings of fields that aren’t fields themselves, we see that, in the Nakayama Lemma, the

hypothesis that one is dealing with a finite module cannot be dropped.

Section 4.2 Integral Extensionsint

An extension of a domain A is a domain B that contains A. An element β of an extension B is integral

over A if it is a root of a monic polynomial with coefficients in A, say f(β) = 0, where

(4.2.1) f(x) = xn + an−1x
n−1 + · · ·+ a0,eqn

and ai are in A. An extension of A is an integral extension if all of its elements are integral over A.

If X = SpecA and Y = SpecB are affine varieties, and if A ⊂ B is an integral extension, we call the

morphism Y
u

−→ X defined by the inclusion A ⊂ B an integral morphism.

The discussion of Section ??, is helpful for an intuitive understanding of the geometric meaning of inte-

grality, so we review it here.

4.2.2. Example.integralovercx Let X denote the affine line SpecA, A = C[x], and let Y be the plane affine curve defined

by an irreducible polynomial f(x, y). So Y = SpecB, B = C[x, y]/(f). The inclusion of A into B gives us

a morphism Y
u

−→ X , the restriction of the projection from the plane A
2
x,y to the line X .

We write f as a polynomial in y whose coefficients are polynomials in x:

f(x, y) = an(x)y
n + an−1(x)y

n−1 + · · ·+ a0(x).
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Let x0 be a point of X , and let ai = ai(x0), so that f(x0, y) = anx
n + an−1x

n−1 + · · ·+ a0. The fibre of Y
over x0 is the set of points (x0, y0) such that y0 is a root of f(x0, y). Because f is irreducible, the discriminant

of f with respect to the variable y isn’t identically zero (??). So for most x0, f(x0, y) will have nonzero

discriminant and therefore it will have n distinct roots.

If f is monic, the residue of y in B will be integral over A, and the polynomial f(x, y) will have degree n
for every x. The product of the roots, which is a0, is bounded near x0 Therefore either all roots are bounded

near x0, or 0 is a root of f(x0, y). In the second case, we can substitute y = y + c with a generic c. Then

f1(x, y) = f(x, y + c) remains monic, and 0 is not a root of f1(x0, y). Therefore the roots of f1(x0, y)
are bounded. So the roots of f(x0, y) are bounded in either case. As x approaches a point x0 at which the

discriminant vanishes, some roots come together, but the roots remain bounded.

On the other hand, if the leading coefficient an(x) isn’t constant and if x0 is a root of an, then f(x0, y)
will have degree less than n. Above x0, some roots are missing. What happens is that, as x approaches x0,

at least one root tends to infinity. (In calculus, one says that the locus f(x, y) = 0 has a vertical asymptote at

x0.) This is seen when one divides f by its leading coefficient. Let ci(x) = ai(x)/an(x), and let

g(x, y) = yn + cn−1y
n−1 + · · ·+ cn

(
= f(x, y)/an

)

The monic polynomial g(x0, y) has the same roots as f(x0, y) for all x0 such that an(x0) 6= 0. Suppose that

an(x0) = 0. Because f is irreducible, at least one coefficient coefficient of f , say ai, doesn’t have x0 as root.

Then the coefficient ci tends to infinity as x approaches x0. Since ci is a symmetric function in the roots, the

roots don’t remain bounded.

This is the general picture: The roots of a polynomial vary continuously, and they remain bounded when

the leading coefficient isn’t zero. If the leading coefficient vanishes at a point, some roots are unbounded near

that point. �

figure

The next lemma shows that one can always clear the denominator in an algebraic element to obtain one

that is integral.

4.2.3. Lemma.cleardenom Let A be a domain with fraction field K, let L be a field extension of K. and let β be an

element of L that is algebraic over K. Say that β is a root of the polynomial anx
n + an−1x

n−1 + · · · + a0,

with ai ∈ K. Then β′ = anβ is integral over A.

proof. We substitute β = β′/an and multiply by an−1
n to clear the denominator: β′ is a root of

xn + an−1x
n−1 + (anan−2)x

n−2 + · · ·+ (an−1
n a0). �

4.2.4. Lemma.aboutintegral Let A ⊂ B be domains.

(i) The ring extension A[b] of A generated by an element b of B is a finite A-module if and only if b is integral

over A.

(ii) The set of elements of B that are integral over A is a subring of B.

(iii) If B is generated by finitely many integral elements, it is a finite A-module.

(iv) Suppose that B is an integral extension of A. An element of an extension of B that is integral over B is

also integral over A. �

4.2.5. Corollary.integralifffi-

nite

An extension A ⊂ B of finite-type domains is an integral extension if and only B is a finite

A-module. �

4.2.6. Example.invarintegral If G is a finite group of automorphisms of a finite-type domain B, B is an integral extension

of the ring of invariants BG (see Theorem 2.9.2).

The next theorem is named after Max Noether (1844-1921), the father of Emmy Noether. We will make

use of it often.

4.2.7. Noether Normalization Theorem.noether-

normal

Let A be a finite-type algebra over an infinite field k. There exist

elements y1, . . . , yn in A that are algebraically independent over k, and such that A is a finite module over the

polynomial subalgebra k[y1, . . . , yn].
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The theorem can be stated by saying that every affine variety X admits an integral morphism X → A
n to

an affine space.

4.2.8. Lemma.nonzerocoeff Let k be an infinite field, and let f(x) be a nonzero polynomial of degree d in x1, . . . , xn,

with coefficients in k. After a suitable linear change of variable, the coefficient of xdn in f will be nonzero.

proof. Let fd be the part of f of degree d. It suffices to choose coordinates x1, ..., xn in P
n−1 so that the point

q = (0, ...0, 1) isn’t a zero of fd. �

proof of the Noether Normalization Theorem. Say that A is generated as algebra by the elements x1, . . . , xn.

We use induction on n. If those elements are algebraically independent over k, A will be a polynomial ring,

and we are done. If not, they will satisfy a polynomial relation f(x) = 0 of some degree d, with coefficients in

k. The lemma tells us that, after a suitable change of variable, the coefficient of xdn in f will be nonzero. It can

be normalized to 1. Then f will be a monic polynomial in xn with coefficients in the subalgebra R generated

by x1, . . . , xn−1. So xn will be integral over R, and therefore A will be a finite R-module. By induction on

n, we may assume that R is a finite module over a polynomial subalgebra P . Then A is a finite module over

P too. �

4.2.9. Nullstellensatz (version 4).nullfour Let K be a field extension of an infinite field k, and suppose that K is a

finite-type k-algebra. Then K is a finite extension of k (a finite-dimensional K-vector space).

proof. The Noether Normalization Theorem tells us that K is a finite module over a polynomial subalgebra

P = k[y1, . . . , yd], and Corollary 4.1.5 shows that P is a field. This implies that d = 0. So K is a finite

module over k. �

Note.truefinfld Theorems 4.2.7 and 4.2.9 are true when k is a finite field (see xxxx).

Section 4.3 Finiteness of the Integral Closurefinint

Let A be a domain with fraction field K, and let L be a finite field extension of K.

The integral closure of A in L is the set of all elements of L that are integral over A. Lemma 4.2.4 (ii) shows

that the integral closure is a domain, and it contains A.

The normalization A of A is the integral closure of A in K – the set of all elements of the fraction field K that

are integral over A. A normal domain A is a domain that is equal to its normalization. A normal variety X is

a variety that has an affine covering {Xi = SpecAi} in which Ai are normal domains.

If A is the normalization of a finite-type domain A, and if X = SpecA and X = SpecA, we call X the

normalization of X .

The object of this section is to prove the next theorem:

4.3.1. Theorem.normalfinite Let A be a finite-type domain with fraction field K of characteristic zero, and let L be a

finite field extension of K. The integral closure of A in L is a finite A-module, and therefore a finite-type

domain. In particular, the normalization of A is a finite A-module and a finite-type domain.

The theorem is also true for a finite-type k-algebra when k is a field of characteristic p, though the proof we

give here doesn’t work.

4.3.2. Example.nodecurve (normalization of a nodal cubic curve) The algebra R = C[u, v]/(v2−u3−u2) embeds into

the one-variable polynomial algebra S = C[x] by u = x2 − 1 and v = x3 − x. Then x = v/u , so the fraction

fields of the two algebras are equal, and the equation x2 − u− 1 = 0 shows that x is integral over R. Here S
is the normalization of R.

The curve C = SpecR has a node at the origin, SpecS is the affine line A
1
x, and the inclusion S ⊂ R

defines an integral morphism A
1
x → C. The fibre of this morphism over the point (0, 0) of C is the point pair

x = ±1, and the morphism is bijective at all other points. One may regard C as the variety obtained from the

affine line by gluing the points x = ±1 together. �

##figure##
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4.3.3. Lemma.ufdnormal (i) A unique factorization domain is normal. In particular, a polynomial ring over a field is

normal.

(ii) Let R be a normal domain, and let s be a nonzero element of R. The localization Rs is normal.

(iii) If s1, ..., sk are elements of a domain R that generate the unit ideal, and if the localizations Rsi are normal

for every i, then R is normal.

proof. (i): Let R be a unique factorization domain, and let α be an element of its fraction field K that is integral

over R. Say that

αn + a1α
n−1 + · · ·+ an−1α+ an = 0,

with ai in R. We write α = r/s, where r and s are relatively prime elements of R. Multiplying by sn gives us

the relation rn + a1r
n−1s+ · · ·+ ans

n = 0 , or

rn = −s (a1r
n−1 + · · ·+ ans

n−1).

This equation shows that if a prime element p of R divides s, it also divides r. Since r and s are relatively

prime, there is no such element. Therefore s is a unit, and α is in A.

We omit the verification of (ii) and (iii). �

4.3.4. Lemma.abouttracetwo Let A be a normal noetherian domain with fraction field K of characteristic zero, and let β
be an element of a field extension L of K that is integral over A. The coefficients of the (monic) irreducible

polynomial f for β over K are elements of A.

proof. Since we may replace L by K(β), we may assume that L is a finite extension of K. A finite extension

embeds into a Galois extension, so we may assume that L is a Galois extension of K. Let G be its Galois

group, and let {β1, . . . , βr} be the G-orbit of β, with β = β1. The irreducible polynomial for β over K is

(4.3.5) f(x) = (x− β1) · · · (x− βr).orbitpoly

Its roots are the elements of the orbit, and its coefficients are symmetric functions in the roots. If β is integral

over A, then all elements of the orbit are integral over A, and therefore the symmetric functions are integral

over A. The symmetric functions are in K, and since A is normal, they are elements of A. So the coefficients

of f are in A. �

Let L/K be a finite field extension, and let β be an element of L. When L is viewed as a vector space over

K, multiplication by β becomes a linear operator on L. The trace of this operator will be denoted by tr(β).
The trace is a K-linear map, a linear transformation, L → K.

4.3.6. Lemma.abouttraceone Let β be an element of a finite field extension L of K, and let

f(x) = xr + a1x
r−1 + · · ·+ ar

be the irreducible polynomial for β over K. Let n = [L : K] and d = [L : K(β)], so that n = dr. Then

tr(β) = −da1. If β is an element of K, then tr(β) = nβ.

proof. With respect to the basis 1, β, . . . , βr−1, the matrix of multiplication by β on K(β) will have the form

illustrated below for n = 3. Its trace is −a1.

Mβ =



0 0 −a3
1 0 −a2
0 1 −a1


 .

Next, let (u1, . . . , ud) be a basis for L over the intermediate field K(β). Then {βiuj}, with i = 0, . . . , r − 1
and j = 1, . . . , d, will be a basis for L over K. When this basis is listed in the order

(u1, u1β, ..., u1β
n−1; , . . . ;ud, ..., udβ

n−1),

the matrix of multiplication by β will be made up of d blocks of the matrix Mβ . �
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4.3.7. Lemma.formnondeg Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be a finite field extension of K. The form L × L → K defined by 〈α, β〉 = tr(αβ) is K-bilinear, symmetric,

and nondegenerate. If α and β are integral over A, then 〈α, β〉 is an element of A.

proof. The form is obviously symmetric, and it is bilinear because trace is linear. A form is nondegenerate if

its nullspace is zero, which means that when α is nonzero, there is an element β such that 〈α, β〉 6= 0. We let

β = α−1. Then 〈α, β〉 = tr(1), which is the degree [L : K] of the field extension. It is here that the hypothesis

on the characteristic of K enters: The degree is a nonzero element of K. Finally, if α and β are integral over

A, so is their product αβ (4.2.4)(ii). Lemmas 4.3.4 and 4.3.6 show that 〈α, β〉 is an element of A. �

proof of Theorem 4.3.1. Let A be a finite-type domain with fraction field K, and let L be a finite field

extension of K. We are to show that the integral closure of A in L is a finite A-module.

Step 1: We may assume that A is normal.

We use the Noether Normalization Theorem to write A as a finite module over a polynomial subring

R = C[y1, . . . , yd]. Let F be the fraction field of R. Then K and L are finite extensions of F . An element of

L will be integral over A if and only if it is integral over R (4.2.4)(iv). So the integral closure of A in L is the

same as the integral closure of R in L. We may therefore replace A by the normal algebra R, and K by the

field F .

Step 2: Bounding the integral extension.

Let (v1, . . . , vn) be a K-basis for L whose elements are integral over the normal domain A (see Lemma

4.2.3). We define a K-linear map

(4.3.8) T : L → Knmapvector

by T (β) =
(
〈β, v1〉, . . . , 〈β, vn〉

)
, where 〈 , 〉 is the form defined in Lemma 4.3.7. If 〈β, vi〉 = 0 for all i,

then because (v1, . . . , vn) is a basis, 〈β, γ〉 = 0 for all γ in L, and since the form is nondegenerate, β = 0.

Therefore T is injective.

Let B be the integral closure of A in L. The basis elements vi are in B, and if β is an element of B, the

elements βvi will be in B too. Therefore 〈β, vi〉 will be in A, and T (β) will be in An. When we restrict T to

B, we obtain an injective map B → An that we denote by T0. Since T is K-linear, T0 is a A-linear. It maps

B isomorphically to its image, an A-submodule of An. Since A is noetherian, every submodule of the finite

A-module An is finitely generated. So the image is a finite A-module, and B is a finite A-module too. �

Section 4.4 Geometry of Integral Morphismsprmint

Let

(4.4.1) Y
u

−→ Xfinmorph

be an integral morphism of affine varieties, say X = SpecA and Y = SpecB. The main facts about such a

morphism are summarized below, in Theorem 4.4.3. That theorem shows that the geometry is as nice as could

be expected for a map that, most often, isn’t injective.

Corollary 4.1.4 shows that the extension IB of an ideal I < A is not the unit ideal of B. The next lemma

tells us something about the contraction of an ideal of B.

4.4.2. Lemma.contrnotzero Let A ⊂ B be an integral extension of finite-type domains. If J is a nonzero ideal of B, its

contraction I = J ∩A is a nonzero ideal of A.

proof. A nonzero element β of J will be integral over A, say βn + an−1β
n−1 + · · · + a0 = 0, with ai ∈ A.

If a0 = 0, then because B is a domain, we can cancel β from the equation. So we may assume a0 6= 0. The

equation shows that a0 is in J , and since it is also in A, it is a nonzero element of I . �

Going back to the integral morphism Y
u

−→ X , we say that a closed subvariety D of Y lies over a closed

subvariety C of X if C is the image of D, and we say that a prime ideal Q of B lies over a prime ideal P of

A if P is the contraction Q ∩A of Q. For example, if a point y of Y = SpecB has image x in X , then y lies

over x, and maximal ideal my lies over the maximal ideal mx.
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4.4.3. Theorem.closedimage Let Y
u

−→ X be an integral morphism of affine varieties.

(i) u is surjective, and its fibres have bounded cardinality.

(ii) The image of a closed subset of Y is closed in X .

(iii) If D′ ⊂ D are closed subvarieties of Y that lie over the same closed subvariety C of X , then D′ = D.

(iv) The set of closed subvarieties D of Y that lie over a closed subvariety C of X is finite and nonempty.

proof of Theorem 4.4.3 (i). (bounding the fibres)

Let mx be the maximal ideal at point x of X . Corollary 4.1.4 shows that the extended ideal mxB is not

the unit ideal of B, so it is contained in a maximal ideal of B, say my , where y is a point of Y . Then x is the

image of y (??), so u is surjective.

Let k(x) be the residue field of A at x. Then B = B/mxB is a k(x)-algebra. Its maximal ideals correspond

to the maximal ideals of B that contain mxB, the ones that correspond to points y such that u(y) = x. Since

B is a finite A-module, B is a finite-dimensional complex vector space. Proposition 2.2.3 tells us that B has

finitely many maximal ideals. So there are finitely many points of Y that lie over x. �

We make a digression before proving the remaining parts of Theorem 4.4.3. Say that X = SpecA and

Y = SpecB, as above, let Q be a prime ideal of B, and let P = Q ∩ A be its contraction. Further, let

B = B/Q and A = A/P . Because the kernel of the composed map A ⊂ B → B is P , we obtain an injective

map A → B. If (b1, ..., bk span B as A-module, the residues (b1, ..., bk) span B as A-module. So B is a finite

A-module.

Let D = SpecB and C = SpecA. So D ⊂ Y and C ⊂ X . Part (i) of the theorem shows that the map

D → C is surjective. Therefore D lies over C.

4.4.4. Corollary.QoverP With notation as above, let C ⊂ X and D ⊂ Y be subvarieties defined by prime ideals P
and Q of A and B, respectively. Then D lies over C if and only if Q lies over P . �

This will allow us to replace X and Y by the closed subvarieties C and D in some situations.

proof of Theorem 4.4.3 (ii). (the image of a closed set is closed)

It suffices to show that the image C of a closed subvariety D is closed. We replace Y and X by D and C.

Then (i) applies. �

proof of Theorem 4.4.3 (iii). (D′ ⊂ D lie over C)

We replace Y and X by D and C. Then what we must show is that if D′ is a proper closed subset of Y ,

its image C ′ is a proper closed subset of X , or, if Q′ is a nonzero prime ideal of B, then, then its contraction

P ′ = Q′ ∩A is nonzero. This is Lemma 4.4.2.

proof of Theorem 4.4.3. (iv) (subvarieties that lie over a closed subvariety)

The inverse image Z = u−1C of a closed subvariety C is closed in Y . It is the union of finitely many

irreducible closed subsets, say Z =
⋃
Di. Let Ci be the image of Di. Part (ii) tells us that Ci closed in X .

Since u is surjective, C =
⋃

Ci, and since C is irreducible, it is equal to at least one Ci. The components Di

of Z such that Ci = C are the ones that lie over C.

Next, any subvariety D′ that lies over C will be contained in Z =
⋃
Di, and since it is irreducible, it will

be contained in Di for some i. Part (iii) shows that D′ = Di. �

Section 4.5 Chevalley’s Finiteness Theorem

finmorph
A morphism of varieties Y

u
−→ X is a finite morphism if the inverse image Y ′ of every affine open subset

X ′ = SpecA of X is affine, say Y ′ = SpecB, and B is a finite A-module. Integral morphisms of affine

varieties and inclusions of closed subvarieties into a variety X are examples of finite morphisms.

4.5.1. Lemma.onecov-

erfinite

Let Y
u

−→ X is a morphism of varieties, let {Xi} be a open covering of a variety X , and let

Yi = f−1Xi. If the restricted morphism Yi
ui−→ Xi is a finite morphism for each i, then u is a finite morphism.

proof. When we restrict a finite morphism Y → X to an open subvariety X ′ of X , the resulting map Y ′ → X ′

will be a finite morphism. Let Y
u

−→ X be given, and suppose that there is a covering of X by open sets Xi
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to which the restrictions of u are finite morphisms. Any open subset of X can be covered by open subsets,

each of which is a subset of the sets Xi, so any open subset of X can be covered by open subsets to which the

restriction of u is a finite morphism.

Let L denote the function field of Y . We are to show that the restriction of u to any affine open subset

of X is a finite morphism. So we may assume that X is affine, say X = SpecA. Let Y ′ = SpecB′ be a

(nonempty) affine open subset of Y . The morphism u restricts to a morphism Y ′ → X , which is defined by

a ring homomorphism A
ϕ

−→ B′, and the kernel of ϕ is independent of Y ′ because it is also the kernel of the

composed map A → B′ ⊂ L. If A is the image of A in L, the morphism u will send every affine open set Y ′

to X = SpecA. So u has image in X . We may therefore replace X by X , which reduces us to the case that

ϕ is injective.

Since the simple localizations of X form a basis for the topology, we may cover X by simple localizations

to which the restriction of u is finite. Thus there will be nonzero elements s1, ..., sk that generate the unit ideal

of A, such that, if Ai = Asi , X
i = SpecAi, and u−1(Xi) = Y i, then Y i is affine, say Y i = SpecBi, and

Bi is a finite Ai-module. Let B =
⋂
Bj .

The plan is to show that Y = SpecB. Let Aij = Asisj , and Xij = SpecAij . Then Y ij = u−1(Xij) is a

localization of Y i and of Y j , the spectrum of the ring Bij = Bi[s
−1
j ] = Bj [s

−1
i ]. The localization B[s−1

i ] of

B is equal to the intersection of the localizations Bj [s
−1
i ], all of which contains Bi, and one of which, namely

Bi[s
−1
i ] is equal to Bi. So the intersection of the localizations Bj [s

−1
i ] is Bi.

We choose a finite set b1, ..., bn of elements of B that generates Bi as Ai-module for every i. We can do

this because Bi is a finite Ai-module. Let C be the cokernel of the map An → B that sends eν  bν . The

localization Ci of C is the cokernel of the map Ani → Bi (0.7.6), and is zero for every i. Therefore C = 0.

So B is a finite A-module. According to Proposition 3.5.5, there is a morphism Y
u

−→ SpecB. Because the

localization of u is an isomorphism for every i, u is an isomorphism. �

4.5.2. Chevalley’s Finiteness Theorem.chevfin Let Y be a closed subvariety of a product Pn×X of a projective

space with a variety X , and let π be the projection from Y to X . If the fibres of π are finite sets, then π is a

finite morphism.

4.5.3. Corollary.projchevfin A morphism Y
u

−→ X of projective varieties whose fibres are finite sets is a finite morphism.

This corollary follows from the theorem when one replaces Y by the graph of the morphism u. �

proof of the Chevelley Finiteness Theorem.

This is Schelter’s proof. Descending induction on Y (2.7.4) allows us to assume that for every proper closed

subvariety V of Y , the restriction of π to V is a finite morphism. Lemma 4.5.1 shows that we may assume X
affine, say X = SpecA.

Let y0, ..., yn be coordinates in P
n, and let U i be the standard affine open set {y0 6= 0}. To simplify

notation, we replace the symbol ×X by a tilde, writing P̃ for Pn×X , and Ũ for U×X , etc.

We first consider a special case, that there exists a hyperplane H in P
n such that Y is disjoint from H̃ =

H×X . We adjust coordinates so that H is the hyperplane H0, and we let Z = H̃0. Then Y ∩Z = ∅ and Y is

contained in Ũ0.

Let ui = yi/y0 and vi = yi/y1 be coordinates in U0 and U1, respectively, with

u0 = 1 , v1 = 1 , and v0u1 = 1

So Ũ0 = SpecA[u0, ..., un] and Ũ1 = SpecA[v0, ..., vn]. Since Y is closed in P̃, it is closed in Ũ0. Therefore

it is an affine variety, the zero set of a prime ideal P0 of A[u], and its coordinate algebra will be B = A[u]/P0.

Next, we look on the standard affine open set U1. Let Y 1 and Z1 denote the closed subvarieties Y ∩ Ũ1

and Z ∩ Ũ1 of Ũ1, respectively. Then Y 1 is the zero set of a prime ideal P1 of A[v], and Z1 is the zero set of

the principal ideal of A[v] generated by v0. The intersection Y 1 ∩Z1 is empty because Y ∩Z is empty, so the

sum P1 + (v0) is the unit ideal. There is an equation in A[v] of the form

(4.5.4) f1(v) + g1(v)v0 = 1fplusg

with f1(v) in P1 and g1(v) in A[v].
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This equation is also valid in the coordinate algebra of the intersection Ũ0 ∩ Ũ1, which is the spectrum of

the common localization A[u, v] = A[v][v−1
0 ] = A[u][u−1

1 ]. In A[u, v], we may write the equation (4.5.4) in

terms of u, using the relation

vj = uju
−1
1

When we do this, and multiply by a large power uk1 to clear denominators, we will obtain an equation in A[u]
of the form

F1(u) +G1(u) = uk1

where F1(u) = f1(v)u
k
1 and G1(u) =

(
g1(v)v0

)
uk1 . The ideals P0 of A[u] and P1 of A[v] generate the same

ideal in A[u, v]. Since f1(v) is in P1, F1(u) will be in P0 if k is large enough.

Now the important point is this: As functions of u, the variables vj have degree zero. Therefore F1(u) will

be a polynomial of degree k, but because v0u1 = 1, G1(u) will have degree k− 1. When we restrict to Y , the

term F1 drops out, and we obtain the equation in B:

uk1 = G1(u)

in which G1 has degree k − 1.

We can replace U1 by U i for every index i = 1, ..., n, using the same large exponent k. Thus there will be

relations in B of the form

(4.5.5) uki = Gi(u)uhatk

with Gi of degree k − 1.

Suppose that an element β of B is represented by a polynomial p(u) in A[u]. If a monomial m that appears

in p is divisible by uki for some i, say m = uki z, then β is also represented by the polynomial obtained by

substituting Gi(u)z for m into p(u), and Gi(u)z has lower degree than m. By making such substitutions

finitely often, we will be left with a polynomial p̃(u) that still represents β, and in which no monomial that

appears is divisible by any uki . Any monomial of degree ≥ nk + 1 will be divisible by uki or at least one i,
so the polynomial p̃ will have degree at most nk. Therefore the monomials in u of degree ≤ nk span B as

A-module. So B is a finite A-module.

This takes care of the case in which there exists a hyperplane H such that Y is disjoint from H̃ . The next

lemma shows that we can cover the given variety X by open subsets to which this special case applies. Then

Lemma 4.5.1 completes the proof.

4.5.6. Lemma.avoidhplane Let hypotheses be as in the statement of Chevalley’s Theorem. For every point p of X , there is

a hyperplane H in P
n and an affine open neighborhood X ′ of p whose inverse image Y ′ in Y is disjoint from

H̃ .

proof. The fibre of Y over a point p of X will be finite a finite set of points q̃1, ..., q̃r . Since Y ⊂ P
n×X we

can project these points to P
n, obtaining a finite set q1, ..., qr . We choose a hyperplane H in P

n that avoids

this finite set. Then H̃ avoids the fibre of Y over p. Let V denote the closed subset Y ∩ H̃ of Y . Since V is a

proper closed subset of Y , every component of V is finite over X , and therefore has a closed image (Theorem

4.4.3). This is our induction hypothesis. Thus the image W of V in X is closed, and it doesn’t contain p. Then

X ′ = X − W is the required neighborhood of p: If q′ is a point of its inverse image Y ′, then q′ 6∈ V , and

therefore q′ 6∈ H̃ . So Y ′ ∩ H̃ = ∅. �

Section 4.6 Example: Double Planesdplane

(4.6.1)affdplanes affine double planes

Let A be the polynomial algebra C[x, y], and let X be the affine plane SpecA. An affine double plane is

a locus of the form w2 = f(x, y) in affine 3-space, where f is a square-free polynomial – a nonconstant

polynomial with no square factor. Let B = C[w, x, y]/(w2 − f), so that the double plane is Y = SpecB. We

denote by w, x, y both the variables and their residues in B.

4.6.2. Lemmadplanering-

normal

The algebra B is a normal domain, and a free A-module with basis (1, w). It has an auto-

morphism σ of order 2, defined by a+ bw  a− bw, and the algebra of σ-invariant elements is A. �
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The inclusion A ⊂ B gives us an integral morphism Y
u

−→ X that sends (w, x, y) to (x, y). Given a point

p = (x0, y0) of X , the equation w2 = f(x0, y0) determines the points of Y over p. When f(x0, y0) = 0, the

only solution is w0 = 0, and when f(x0, y0) 6= 0, there are two solutions that differ by sign. The reason that

Y is called a double plane is that most points of the plane X are covered by two points of Y . Points of X
correspond bijectively to σ-orbits of points of Y .

The curve {f = 0} in X , which we denote by ∆, is the branch locus of the covering.

We study prime ideals of B that lie over principal prime ideals of A. A prime ideal Q that lies over a

principal prime ideal P needn’t be a principal ideal, but its zero set D in Y will lie over the plane curve C
defined by P , and D will be called a curve too.

Since the fibres of the map Y → X have order at most two, there will be at most two closed subvarieties

D that lie over C. If there are two such subvarieties, we say that C splits in Y .

4.6.3. Example.circleex-

ample

Let f(x, y) = x2 + y2 − 1. The double plane Y = {w2 = x2+y2−1} is an affine quadric.

Its branch locus ∆ is the curve {x2+y2 = 1}.

The line C1 : {y = 0} in X meets the branch locus ∆ transversally at the points (±1, 0), and the prime

ideal yA remains prime, because B/yB ≈ C[w, x]/(w2−x2+1) and w2−x2+1 is an irreducible polynomial.

On the other hand, the line C2 : {y = 1} is tangent to ∆ at the point (0, 1), and it splits. When we set y = 1
in the equation for Y , we obtain w2 = x2. The locus {w2 = x2} is the union of the two lines {w = x} and

{w = −x} that lie over C1.

##figure##

This example illustrates a general principle: A curve that intersects the branch locus transversally at some

point doesn’t split. We explain this now.

(4.6.4)localanal local analysis

Let’s suppose that a plane curve C : {g = 0} and the branch locus ∆ : {f = 0} of a double plane meet at a

point p. We adjust coordinates so that p becomes the origin (0, 0), and we write

f(x, y) =
∑

aijx
iyj = a10x+ a01y + a20x

2 + · · ·

Since ∆ contains p, the constant coefficient of f is zero. The line {a10x+ a01y = 0} is the tangent line to ∆
at p. It is defined if the two linear coefficients aren’t both zero. Similarly, writing g(x, y) =

∑
bijx

iyj , the

tangent line to C, if defined, is the line {b10x+ b01y = 0}.

Let’s suppose that the two tangent lines are defined and distinct – that the curves intersect transversally

at p. We change coordinates once more, to make the two tangent lines the coordinate axes. After adjusting by

scalar factors, the polynomials f and g will have the form

f(x, y) = x+ u(x, y) and g(x, y) = y + v(x, y),

where u and v are polynomials all of whose terms have degree at least 2.

Let X1 = SpecC[x1, y1] be another affine plane. We consider the map X1 → X defined by the substitu-

tion x1 = d+ u, y1 = y + v.

Working in the classical topology, this map is invertible analytically, because the Jacobian matrix

(4.6.5)

(
∂(x1, y1)

∂(x, y)

)

(0,0)

jacob

at p is the identity matrix. When we make this substitution, ∆ becomes the locus {x1 = 0} and C becomes the

locus {y1 = 0}. In this local coordinate system, the equation w2 = f that defines the double plane becomes

w2 = x1. When we restrict it to C by setting y1 = 0, x1 becomes a local coordinate function on C, and

the restriction of the equation remains w2 = x1. The inverse image Z of C doesn’t decompose, locally at p.

Therefore it doesn’t decompose globally either, and this shows that P remains prime.

4.6.6. Corollary.splitnot-

transversal

A curve C that meets the branch locus transversally at some point doesn’t split in Y . �

10



This isn’t a complete analysis. When C and ∆ are tangent at every point of intersection, C may split or not,

and in most cases, which possibility occurs cannot be decided by a local analysis. However, there is one case in

which a local analysis suffices to decide splitting, the case that C is a line. Say that C ≈ SpecC[t]. We restrict

the polynomial f to C, obtaining a polynomial φ(t) in t. A root of φ corresponds to an intersection of the line

C with ∆, and a multiple root corresponds to an intersection at which C and ∆ are tangent, or at which ∆ is

singular. The line C will split if and only if φ(t) is a square in C[t]. We factor: φ(t) = c(t−a1)
r1 · · · (t−ak)

rk .

Then φ(t) will be a square if and only if the multiplicity ri of every root ai is even.

4.6.7. Corollary.tangentsplit A line in the plane X splits if it has a simple tangency with the branch locus at every

intersection point. �

A rational curve is a curve whose function field is a rational function field C(t) in one variable. One may

make a similar analysis for any rational plane curve, such as a conic, but one needs to examine its singular

points and its points at infinity as well as its smooth points at finite distance.

(4.6.8)curiouspoint a curious point.

Most curves C in the plane X will intersect a given branch locus ∆ : {f = 0} transversally, and therefore

won’t split. In fact, at first glance it isn’t obvious that there will be any curves in X that split, when f has

high degree. However, every curve in Y lies over a curve in X , and most curves in Y won’t be symmetric

with respect to the symmetry σ that sends (w, x, y)  (−w, x, y). For example, when we slice Y by a plane

passing through a point q = (w0, x0, y0), the slice will most often not contain the point q′ = (−w0, x0, y0).
Then if D is the component of the slice that contains q, Dσ will contain q′, and it will be distinct from D. But

the images in X of D and Dσ will be the same. The image will split. Curves that split do exist.

Here is the curious point: Let D be a curve in Y that lies over a curve C in X . Then C won’t split if it

has a transversal intersection with ∆, and this will be true for most curves in X . On the other hand, when C
regarded as the image of the curve D on Y , C will split unless D is symmetric with respect to σ, and most

curves in Y won’t be symmetric.

(4.6.9)

“most” curves on Y

curves on Y (D symmetric) (D not symmetric)
y

y

curves on X (C doesn’t split) (C splits)

“most” curves on X

curious

One has to be careful about the meaning of the word “most”.

(4.6.10)projdplane projective double planes

A projective double plane is a locus of the form

(4.6.11) y2 = f(x0, x1, x2),wtdplane

where f is a square-free homogeneous polynomial of even degree 2d. To regard this as a homogeneous

equation, we must assign weight d to the variable y. Then, since we have weighted variables, we must work

in a weighted projective space WP with coordinates x0, x1, x2, y, where xi have weight 1 and y has weight d.

A point of this weighted space WP is represented by a nonzero vector (x0, x1, x2, y) with the relation that, for

all λ 6= 0, (x0, x1, x2, y) ∼ (λx0, λx1, λx2, λ
dy). The points of the weighted projective space WP that solve

the equation (4.6.11) are the points of the projective double plane Y .

If (x, y) solves (4.6.11) and (x) = (0, 0, 0), then y = 0 too. The vector (0, 0, 0, 0) doesn’t represent a point

of WP. Therefore the projection WP → P
2 = X that sends (x, y) x is defined at all points of Y , and maps

Y to the projective plane X . The fibre of Y over the point x of X consists of the points (x, y) and (x,−y),
which will be equal if and only if x lies on the branch locus of the double plane, the (possibly reducible) curve

∆ : {f = 0} in X . The map σ : (x, y)  (x,−y) is an automorphism of Y , and points of X correspond

bijectively to σ-orbits in Y .
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Since the double plane Y is embedded into a weighted projective space, it isn’t presented to us as a projec-

tive variety in the usual sense. However, it can be embedded into a projective space in the following way: The

projective plane P2
x can be embedded by a Veronese embedding of higher order, using as coordinates the mono-

mials m1,m2, . . . of degree d in x0, x1, x2. This embeds P2 into a projective space PN where N =
(
d+2
2

)
−1.

When we add one more coordinate y to this embedding, we obtain an embedding of the weighted projective

space WP into P
N+1, that sends the point (x, y) to (m, y). The double plane Y can be realized as a projective

variety by this embedding.

If Y → X is a projective double plane then, as happens with affine double planes, a curve C in X may

split in Y or not. If C has a transversal intersection with the branch locus ∆, it will not split, while if C is a

line that has an ordinary tangent to the branch locus ∆ at every intersection point, it will split (Corollary 4.6.7).

For example, when the branch locus ∆ is a generic quartic curve, the lines that split will be the bitangent lines

(see Section ??).

(4.6.12)homogdplan homogenizing an affine double plane

We construct a projective double plane by homogenizing an affine double plane. Let’s write an affine

double plane as

(4.6.13) w2 = F (u1, u2).relabelaffined-

plane
We suppose that F has even degree 2d, and we homogenize F , setting ui = xi/x0. To clear denominators,

we must multiply by x2d
0 . When we set y = xd0 w, we obtain an equation of the form (4.6.11), where f is the

homogenization of F .

(4.6.14)cubicisdplane cubic surfaces and quartic double planes

Let X be the projective plane, with coordinates x0, x1, x2. We label coordinates in the 3-space P
3 as

(x, z) = (x0, x1, x2, z). Let S be the cubic surface in projective 3-space defined by an irreducible homoge-

neous cubic polynomal g(x, z), and let q = (0, 0, 0, 1) be a point of S. Let π be the projection (x, z)  x
S → X .

Since q is a point of S, the coefficient of z3 in g is zero. So g is quadratic in z:

(4.6.15) g(x, z) = a1z
2 + a2z + a3,projequation

The coefficients ai are homogeneous, of degree i in x. The discriminant a22 − 4a1a3 is a homogeneous

polynomial of degree 4 in x. Let Y be the double plane

(4.6.16) y2 = a2
2 − 4a1a3.quarticdplane

and let ∆ : a22 − 4a1a3 be its branch locus. As was remarked, the lines that split in Y will be bitangent lines,

provided that the branch locus is generic.

Given a point (x, z) of S, we can pick out a square root y by defining

(4.6.17) y = 2a1z + a2cubicand-

dplane

This formula defines a map S
ϕ

−→ Y at every point except q. The quadratic formula solves for z in terms of y:

(4.6.18) z =
y − a2
2a1

quadrformula

which defines the inverse map Y
ψ

−→ S when a1 6= 0.

4.6.19. Theorem. A generic cubic surface contains precisely 27 lines.
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proof. Let S be a generic cubic surface in P
3, projected to the plane X from a generic point q of S, as above.

We recall that a generic cubic surface contains finitely many lines. Therefore, when S and q are generic, q will

not be contained in any line in S.

We inspect the projection S
π

−→ P
2
x. Let ℓ be the line in X defined by a linear equation b0x0 + b1x1 +

b2x2 = 0, and let P be the plane in P
3
x,z defined by the same equation. Then P contains q, and the points of P

different from q project to ℓ. The intersection Z = P ∩ S will be a (possibly reducible) cubic curve in P that

contains q. We distinguish three cases:

Case (a): q is a smooth point of Z, and Z is an irreducible cubic.

The complement of q in Z is a branched double covering of ℓ, with one missing point. The line ℓ doesn’t

split in Y .

Case (b): q is a smooth point of Z, and Z is a reducible cubic.

Since q is not contained in a line of S, Z is the union of a conic C and a line L, and q is a point of C. Then

L maps bijectively to ℓ, and the complement of q in S maps injectively to ℓ. In this case ℓ does split in Y .

Case (c): q is a singular point of Z.

Since q is not contained in a line of S, Z is irreducible, and the map Z ′ → ℓ is injective.

4.6.20. Lemma.casec Case (c) occurs precisely once, and that is when P is the tangent plane to S at q, �

We’ll leave the proof of this lemma as an exercise.

The tangent plane to S is the plane orthogonal to the gradient ∇g at q of the defining equation g(x, z)
(4.6.15) of S. The partial derivative ∂g

∂xi
(q) is the coefficient of xi in the linear polynomial a1(x), and ∂g

∂z
(q) =

0. Thus the tangent plane at q is the plane a1(x) = 0. When we set a1 = 0 in the equation (4.6.16) of Y , we

get y2 = a22. The image ℓ : a1(x) = 0 of the tangent plane splits in Y . This doesn’t contradict the fact that

Z ′ → ℓ is injective, because the projection from q is undefined at q.

Anyhow, there are 28 bitangents to a generic quartic, hence 28 lines ℓ that split in Y . Exactly one of these

lines is the line a1(x) = 0, and the 27 others are the ones in Case (b). Each of those gives us one line in S.

To complete the proof, we had better show that when S is a generic cubic surface, the associated double

plane is also generic. We need this in order to justify the assertion that the quartic curve has 28 bitangents.

The next lemma does this.

4.6.21. Lemma.quarticis-

generic

A generic homogeneous quartic f(x0, x1, x2) can be written in the form a22 − 4a1a3, where

ai is a homogeneous polynomial of degree i.

proof. We choose for a1 a linear polynomial such that the line C : {a1 = 0} is a bitangent to the quartic curve

{f = 0}. Then C splits in the double plane, so f is congruent to a square, modulo a1. Let a2 be a quadratic

polynomial such that f ≡ a22 modulo a1. When we take this polynomial as a2, we will have f = a22 − 4a1a3
for some cubic polynomial a3. �
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