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2.1 Ideals, review

idealreview

Let R be a (commutative) ring. An ideal I of R is a nonempty subset that is closed under linear combinations:

If a1, ..., an are in I and r1, ..., rn are in R, then r1a1 + · · ·+ rnan is in I .

The zero ideal of R consists of the zero element alone, and the unit ideal is the whole ring R. An ideal I is

the unit ideal if and only if it contains the element 1 of the ring, and this is true if and only if it contains a unit,

an invertible element of R. A field is a ring that contains precisely two ideals, the zero ideal and the unit ideal.

Let z1, ..., zk be elements of R. The ideal I generated by z1, ..., zk consists of all combinations r1z1 +
· · · + rkzk with coefficients ri in R. Other notations for this ideal are (z1, ..., zk) and (z). The Hilbert Basis

Theorem, which we review in Section 2.4, asserts that every ideal of the polynomial algebra C[x1, ..., xn] can

be generated by some finite set.

Let A ⊂ B be rings. The extension of an ideal I of A is the ideal IB of B generated by I . Its elements are

finite sums
∑

i zibi with zi in I and bi in B. The contraction of an ideal J of B is the ideal J ∩A of A.

If I and J are ideals of R, the product ideal IJ is the ideal whose elements are finite sums of products∑
aνbν with aν in I and bν in J .

A prime ideal of R is an ideal P such that the quotient ring R/P is a domain, a nonzero ring with no zero

divisors. The unit ideal is not a prime ideal.

2.1.1. Proposition.defprime Let P be an ideal, of a ring R, not the unit ideal. The following conditions on P are

equivalent.

(i) P is a prime ideal.

(ii) If a and b are elements of R and if ab ∈ P , then a ∈ P or b ∈ P .

(iii) If A and B are ideals of R, and if AB ⊂ P , then A ⊂ P or B ⊂ P .

(iv) If A and B are ideals of R that contain P , and if AB ⊂ P , then A = P or B = P . �

Because AB ⊂ A ∩B, one may replace AB by A ∩B in parts (iii) and (iv).

Two ideals I and J of a R are comaximal if I + J = R.
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2.1.2. Chinese Remainder Theorem.comax Let I and J be comaximal ideals of R.

(i) The product ideal IJ is equal to the intersection I ∩ J .

(ii) The map R → R/I × R/J that sends an element a of R to its pair of residues is surjective. Its kernel is

I ∩ J . �

2.2 Affine Varietiesaffvar

As before, the affine space A
n is the space of n-tuples of complex numbers.

We consider finite sets of polynomial equations in n variables x1, . . . , xn:

(2.2.1) f1 = 0 , . . . , fk = 0.equations

If it seems unlikely to cause confusion, we may abbreviate the notation for a finite indexed set such as

x1, . . . , xn by the single letter x. The polynomial algebra may be denoted in abbreviated form by C[x],
and the system of equations by f = 0.

• The affine scheme V (f) is the subset of affine space A
n of points (a1, . . . , an) at which the polynomials

fi vanish, the points that solve the equations (2.2.1). We refer to those points as the zeros of the polynomials

f . The affine schemes are the closed sets in the Zariski topology of An.

We use analogous notation for infinite sets. If S is any set of polynomials, V (S) denotes the set of points

of affine space at which all elements of S vanish.

If I is the ideal generated by some polynomials f1, ..., .fk, the affine scheme V (f) is equal to V (I). All

elements of the ideal I vanish there.

An algebra A is a ring that contains the field C of complex numbers as subring. A homomorphism of

algebras is a ring homomorphism that restricts to the identity on C.

• The coordinate algebra A(f) of the affine scheme V (f) is the quotient C[x]/(f) of the polynomial algebra.

When properly defined, an affine scheme remembers its coordinate algebra as well as its point set, so our

definition of affine scheme is imprecise. Let’s not worry about this here.

• An affine variety is the affine scheme V (P ) defined by a prime ideal P .

Thus the coordinate algebra C[x]/P of the affine variety V (P ) is a domain. The coordinate algebra of affine

space A
n itself is the polynomial algebra C[x]. Geometric properties of an affine variety are reflected in

algebraic properties of its coordinate algebra, and conversely. Algebraic geometry studies this relationship.

A few examples of varieties:

• The point p = (a1, . . . , an) of An is the affine variety defined by the n equations xi−ai = 0, i = 1, . . . , n.

It is a variety because the polynomials xi − ai generate a maximal ideal of the polynomial algebra, and a

maximal ideal is a prime ideal.

The maximal ideal that corresponds to a point p will be denoted by mp. It is the kernel of the substitution

homomorphism C[x]
πp

−→ C that sends a polynomial g(x) to g(p) = g(a1, ..., an).

The coordinate algebra C[x]/mp of the point p is the residue field at p. It will be denoted by k(p). As a field,

k(p) is isomorphic to the field C of complex numbers, but it has the additional structure that comes from its

description as a particular quotient of the polynomial ring.

• The varieties in the affine line A
1 are the points of A1, and the line A

1 itself.

• The set X of solutions of a single irreducible polynomial equation f1(x1, ..., xn) = 0 is an affine hypersur-

face. An affine hypersurface is a variety because an irreducible element generates a prime ideal in the unique

factorization domain C[x].
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The special linear group SL2, the group of complex 2× 2 matrices with determinant 1, is an affine hypersur-

face, the locus of zeros of the irreducible polynomial xw − yz − 1 in A
4.

• A hypersurface in the affine plane A
2 is an affine plane curve.

As before, a line in the affine plane is a locus defined by a linear equation ax+ by = c. Its coordinate algebra

is isomorphic to a polynomial ring in one variable.

• Let p = (a1, . . . , an) and q = (b1, . . . , bn) be distinct points of An. The point pair {p, q} is the affine

scheme defined by the system of n2 equations (xi − ai)(xj − bj) = 0 with 1 ≤ i, j ≤ n. A point pair isn’t

called a variety because the ideal generated by the polynomials (xi − ai)(xj − bj) isn’t a prime ideal, and its

coordinate algebra isn’t a domain.

2.2.2. Proposition.pointpair The coordinate algebra of a point pair is isomorphic to the product algebra C× C.

proof. This follows from the Chinese Remainder Theorem. We inspect the homomorphism

C[x]
ϕ
−→ k(p)×k(q) ≈ C× C

that sends f to the pair of values (f(p), f(q)). Its kernel is the intersection mp ∩mq of the maximal ideals mp

and mq . Distinct maximal ideals are comaximal, so mp ∩mq = mpmq , and ϕ is surjective. Since the elements

xi − ai generate mp and xj − bj generate mq , their products generate the product ideal, which is the kernel of

ϕ. So the coordinate algebra of the point pair, the quotient of the polynomial algebra by mpmq, is isomorphic

to the image k(x)× k(y). �

Here is another consequence of the Chinese Remainder Theorem:

2.2.3. Proposition.findimalg An algebra A that is a complex vector space of dimension d has at most d maximal

ideals.

proof. We show that if m1, ...,mn are maximal ideals of A and ki = A/mi, the homomorphism A → k1 ×
· · ·×kn is surjective. Therefore n ≤ d. By induction on n, we may assume that the map A→ k1×· · ·×kn−1

is surjective, and that its kernel is the product ideal J = m1 · · ·mn−1. So k1 × · · · × kn−1 ≈ A/J . Because

mn is a prime ideal that doesn’t contain any of the ideals mi for i < n, mn doesn’t contain J . Since m1 is a

maximal ideal, m1 and J are comaximal, the map A→ A/J × kn is surjective, and its kernel is m1 · · ·mn.�

2.3 The Correspondence Theoremcorrthmsec

2.3.1. Correspondence Theorem.corrthm Let R
ϕ
−→ S be a surjective ring homomorphism with kernel K. For

example, ϕ might be the canonical map from R to R/K. There is a bijective correspondence

{ideals of R that contain K} ←→ {ideals of S}

This correspondence associates an ideal I of R that contains K with its image ϕ(I) in S and it associates an

ideal J of S with its inverse image ϕ−1(J) in R.

If an ideal I of R that contains K corresponds to the ideal J of S, then ϕ induces an isomorphism of

quotient rings R/I → S/J . So if one of the ideals, I or J , is prime or maximal, they both are. �

2.3.2. Theorem.mapprop Mapping Property of quotient rings. Let R and S be rings, let K be an ideal of a ring R,

and let R
π
−→ R denote the canonical map from R to the quotient ring R = R/K. Homomorphisms R

ϕ
−→ S

whose kernels contain K correspond bijectively to homomorphisms R
ϕ
−→ S, by ϕ = ϕ ◦ π.

R
ϕ

−−−−→ S

π

y
∥∥∥

R
ϕ

−−−−→ S

�

2.3.3. Note.commutative-

diagram

In the above diagram, the maps ϕ ◦ π and ϕ are equal. This is referred to by saying that the

diagram is commutative. A commutative diagram is one in which the maps that can be obtained by composing

the arrows shown depend only on the domain and range. In these notes, all diagrams of maps are commutative,

and we won’t mention commutativity again. �
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2.4 Using the Hilbert Basis Theoremhilb

A module M over a ring R is a finite module if it is generated by a finite set {m1, ...,mk} of elements – if

every element of M can be obtained as a combination r1m1 + · · ·+ rkmk with coefficients ri in R.

An ideal I of a ring R is finitely generated if it can be generated by a finite set of elements, which means

that, when regarded as an R-module, I is a finite module. A ring is noetherian if all of its ideals are finitely

generated. The ring of integers and fields are examples of notherian rings.

2.4.1. Hilbert Basis Theorem.basisthm If R is a noetherian ring, the polynomial ring R[x1, ..., xn] in finitely many

variables over R is noetherian. �

A set of elements {α1, ..., αn} generates an algebra A if every element of A can be expressed, usually

not uniquely, as a polynomial in these elements, with complex coefficients. Or, α1, ..., αn generate A if the

homomorphism C[x1, ..., xn] → A that sends xi  αi is surjective. If so, then A will be isomorphic to the

quotient C[x]/I , where I is the kernel of that homomorphism. A finite-type algebra is one that is generated by

a finite set of elements.

2.4.2. Lemma.qnoeth The quotient R/K of a noetherian ring R modulo an ideal K is noetherian.

proof. If an ideal J of R/K is the image of an ideal I of R, the images of a finite set of generators for I will

generate J . �

2.4.3. Corollary.ftypenoeth Every finite-type algebra is noetherian. �

If (f) is the ideal generated by some polynomials f1, ..., fk, an isomorphism C[x]/(f) ≈ A is called a

presentation of the algebra A. Working with a finite-type algebra without a chosen presentation is analogous

to working with a vector space without a chosen basis. One can choose a presentation when needed. However,

it is often difficult to work explicitly with the quotient modulo an ideal.

2.4.4. Note.Ralgebra If R → A is any ring homomorphism, the ring A may be called an R-algebra. A finite-type

R-algebra is one that is generated, as R-algebra, by a finite set of elements, which means that A is isomorphic

to a quotient of a polynomial algebra R[x] in finitely many variables. The Hilbert Basis Theorem implies that,

when R is a noetherian ring, every finite-type R-algebra is noetherian. �

It is important not to confuse the concept of a finite-type algebra with that of a finite module. A finite-type

R-algebra A is an algebra such that every element can be written as a polynomial in some finite set of elements

α1, ..., αk, with coefficients in R. A finite R-module M is a module such that every element can be written as

a linear combination of some finite set of elements m1, ...,mk, with coefficients in R. �

(2.4.5)ascchcond the ascending chain condition

The condition that a ring R be noetherian can be rewritten in several ways that we explain here.

Our convention is that if S and S′ are sets, the notation S ⊂ S′ means that S is a subset of S′, while

S < S′ means that S is a subset of S′ and not the whole set S′. A proper subset of a set S′ is a nonempty

subset different from S′. So S is a proper subset of S′ if ∅ < S < S′.

A sequence S1, S2, ..., finite or infinite, of subsets of a set Z forms an increasing chain if Sn ⊂ Sn+1 for

all n, equality Sn = Sn+1 being permitted. If Sn < Sn+1 for all n, the chain is strictly increasing.

2.4.6. Lemma.unionisideal Let I1 ⊂ I2 ⊂ · · · be an increasing chain of ideals of a ring R. The union J =
⋃

Iν is an

ideal.

proof. We must show that if a and b are elements of J and r is an element of R, then a + b and ra are in J .

Since a is in J , it is in Iν for some ν, and then, because the chain is increasing, a is in In for any n ≥ ν.

Similarly, there is an index µ such that b is in In for n ≥ µ. If n is sufficiently large, In will contain both a
and b. Then because In is an ideal, a+ b and ra will be in In, and therefore they will be in J . �

Let S be a set whose members are subsets of a set Z. A member M of S is maximal if there is no M ′ in

S such that M < M ′. For instance, the set of proper subsets of a set of five elements contains five maximal

members, the subsets of order four. The set of finite subsets of the integers contains no maximal member. An

ideal is a maximal ideal if it is a maximal member of the set of ideals different from the unit ideal.
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2.4.7. Proposition.noetherconds The following conditions on a ring R are equivalent:

(i) R is noetherian: Every ideal of R is finitely generated.

(ii) The ascending chain condition: Every strictly increasing chain I1 < I2 < · · · of ideals of R is finite.

(iii) Every nonempty set of ideals of R contains a maximal member.

proof. (i) =⇒ (ii): Suppose that R is noetherian, and that we are given an infinite increasing chain of ideals

I1 ⊂ I2 ⊂ · · · . We show that the sequence cannot be strictly increasing. Let J denote the ideal
⋃
Iν . Because

R is noetherian, J is finitely generated, say J = (α1, ..., αk). Because the chain is increasing, all of the

elements αi will be in In if n is large enough. Then J ⊂ In ⊂ In+1 ⊂ J . All of these inclusions are

equalities, and In = In+1.

(ii) =⇒ (iii): We assume (ii). Let S be a nonempty set of ideals of R. Since it is nonempty, S contains an ideal,

say I1. If I1 is a maximal member of S , we stop. If not, there is a member I2 of S with I1 < I2. Continuing

in this way, we construct a strictly increasing chain of members of S . This chain must be finite, and the ideal

at the end will be a maximal member of S .

(iii) =⇒ (i): We assume (iii). Let J be an ideal of R, and let S be the set of finitely generated ideals that

are contained in J . This set isn’t empty because it contains the zero ideal. Therefore it contains a maximal

member, say I , and I is generated by a finite set α1, ..., αk of elements of J . Since I is maximal, it must be

equal to J . Otherwise, adding an element of J not in I to the generating set α1, ..., αk would produce a larger

finitely generated ideal contained in J . So I = J , and therefore J is finitely generated. �

2.4.8. Lemma.fingenlemma Let R be a ring and let 0 → N1

α
−→ N2

β
−→ N3 → 0 be a short exact sequence of

R-modules.

(i) If N2 is finitely generated, so is N3.

(ii) If N1 and N3 are finitely generated, so is N2.

proof. The fact that the map α is injective allows us to regard N1 as a subset of N2. Let u = {u1, ..., uℓ}
be a subset of N1, let v = {v1, ..., vk} be a subset of N2, and let w = {w1, ..., wk} denote the set of images

wi = β(vi) of v in N3.

(i) Suppose that N2 is finitely generated. So there is a finite set v that generates N2. We show that the image

set w generates N3, and therefore that N3 is finitely generated. Let x be an arbitrary element of N3, and let y
be an element of N2 whose image β(y) is x. Since v generates N2, y can be written as a combination

∑
rivi.

Applying β, x = β(y) =
∑

riβ(vi) =
∑

riwi. So x is a combination of the elements w. Therefore w
generates N3.

(ii) Let u and v and w be as above. We show that if w generates N3 and u generates N1, then the union

u ∪ v generates N2. We start with an arbitrary element y of N2. Its image x in N3 will be a combination

x =
∑

riwi of w. We look at the corresponding combination
∑

rivi of v, and we call it y′. The image of y′

in N3 is
∑

riwi = x, the same as the image of y. Therefore z = y − y′ is in the kernel of β, which is N1. So

we can write z as a combination,
∑

skuk of the set u. Then y = y′ + z =
∑

rivi +
∑

skuk. Therefore the

set u ∪ v generates N2. �

2.4.9. Proposition.noetherian-

module

Let R be a noetherian ring, and let M be a finite R-module.

(i) Every submodule of M is a finite module.

(ii) The set of submodules of M satisfies the ascending chain condition.

(iii) Every nonempty set of submodules of M contains a maximal member.

proof. (i) Let N be a submodule of M . Since M is finitely generated, there is a surjective map of modules

Rk →M . The Correspondence Theorem tells us that N is the image of a submodule N ′ of Rk. Lemma 2.4.8

shows that if N ′ is finitely generated, so is N . So it is enough to prove the assertion when M is the module

Rk.

We use the short exact sequence 0 → R
i
−→ Rk π

−→ Rk−1 → 0, where i(a) = (0, ..., 0, a) and

π(a1, ..., ak) = (a1, ..., ak−1). Let N be a submodule of Rk, let I be its inverse image i−1N , which is a

submodule, and therefore an ideal, of R, and let N be its image πN , a submodule of Rk−1. The sequence

0→ I → N → N → 0 is exact, I is finitely generated because R is noetherian, and induction on k allows us

to assume that N is finitely generated. Lemma 2.4.8 tells us that N is finitely generated.
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The proofs of (ii) and (iii) are analogous to the proofs of parts (ii) and (iii) of Proposition 2.4.7. �

All versions of the noetherian property are useful. Here is a simple application of the third one.

2.4.10. Corollary.idealin-

maximal

Let R be a nonzero noetherian ring.

(i) Every ideal I of R that is not the unit ideal is contained in a maximal ideal.

(ii) R contains at least one maximal ideal.

(iii) An element of R that isn’t contained in any maximal ideal is a unit.

proof. We derive this from the noetherian property though, using Zorn’s Lemma, it can be proved without the

noetherian hypothesis.

(i) Let S be the set consisting of the ideals J that contain I and are not equal to the unit ideal: I ⊂ J < R.

The ideal I is an element of S . Therefore S isn’t empty, so it contains a maximal member. That element will

be a maximal ideal.

(ii) This follows by applying (i) to the zero ideal.

(iii) If an element α is not in any maximal ideal, (i) shows that the principal ideal (α) must be the unit ideal. �

2.4.11. Corollary.powersgen-

erate

Let s1, ..., sk be elements of a noetherian ring R that generate the unit ideal of R. For

any positive integer n, The powers sn1 , ..., s
n
k also generate the unit ideal.

proof. The ideal generated by a set of elements s1, ..., sk is the unit ideal if and only if it isn’t contained in any

maximal ideal, and since a maximal ideal is a prime ideal, it will contain si if and only if it contains sni . �

2.5 The Nullstellensatznull

2.5.1.nullone Nullstellensatz (version 1). Let C[x] be the polynomial algebra in the variables x1, . . . , xn. There

are bijective correspondences between the following sets:

• points p of the affine space A
n,

• algebra homomorphisms πp : C[x]→ C,

• maximal ideals mp of C[x].

The homomorphism πp that corresponds to the point p = (a1, . . . , an) of An evaluates a polynomial at p:

πp(g) = g(a1, ...., an). The maximal ideal mp that corresponds to p is the kernel of πp. It is the ideal

generated by the linear polynomials x1 − a1, . . . , xn − an.

It is obvious that every algebra homomorphism C[x] → C is surjective, so its kernel is a maximal ideal.

It isn’t obvious that every maximal ideal of C[x] is the kernel of such a homomorphism. For a proof, see for

instance [Algebra, 11.8.6]. �

The Correspondence Theorem and the Mapping Property of quotient Rings extend the Nullstellensatz to

finite-type algebras.

2.5.2.nulltwo Nullstellensatz (version 2). Let A be a finite-type algebra. There are bijective correspondences be-

tween

• algebra homomorphisms π : A→ C, and

• maximal ideals m of A.

The maximal ideal m that corresponds to a homomorphism π is the kernel of π.

If A is presented as a quotient of a polynomial ring, say A = C[x1, ..., xn]/I , then these sets also corre-

spond bijectively to points p of the affine scheme V (I) of zeros of I in A
n.

proof. Choosing a presentation for A allows us to assume that A is a quotient of a polynomial ring, say

C[x]/I . The Correspondence Theorem tells us that maximal ideals of A correspond to maximal ideals of C[x]
that contain I . These maximal ideals correspond to points of V (I) (see Section 2.2). The Mapping Property,
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applied to the canonical homomorphism C[x]
ϕ
−→ A, tells us that homomorphisms A

π
−→ C correspond to

homomorphisms C[x]
π
−→ C whose kernels contain I:

(2.5.3)

C[x]
π

−−−−→ C

ϕ

y
∥∥∥

A
π

−−−−→ C

polyringtoA

These are the homomorphisms that correspond to points of V (I). �

We will see two more versions of the Nullstellensatz.

(2.5.4) the spectrum of a finite-type algebraspectrumalg

The Nullstellensatz allows us to define an affine scheme associated to a finite-type algebra A without

reference to a presentation. To do this, we replace the scheme V (I) of zeros of I in A
n, which depends on

a presentation, by an abstract set of points, the spectrum of A, that we denote by SpecA. We put one point

into the spectrum for every maximal ideal of A, and we denote by mp the maximal ideal that corresponds to

a point p. Points of the spectrum also correspond bijectively to algebra homomorphisms πp : A → C. When

we present A as a quotient C[x]/I of a polynomial algebra, the points of SpecA correspond to points of the

affine scheme V (I).

To work with SpecA, we may interpret its points as maximal ideals or as homomorphisms to C, whichever

is most convenient, and if we have chosen a presentation A ≈ C[x]/I , we may interpret its points as the points

of V (I).

The ring A is the coordinate algebra of the scheme SpecA, and if the coordinate algebra A is a domain,

SpecA is called a variety.

2.5.5. Corollary.empty

(i) Let I be an ideal of the polynomial ring C[x]. The affine scheme V (I) is the empty set if and only if its

coordinate algebra A = C[x]/I is the zero ring, which happens if and only if I is the unit ideal.

(ii) If A is a finite-type algebra, and if SpecA is empty, then A is the zero ring.

proof. See Corollary 2.4.10. �

Note. We have used the symbol π above, to distinguish homomorphisms A → C from homomorphisms

C[x1, . . . , xn] → C, and the notation m is used for an analogous reason. In the future, we will put bars over

the letters only when there is danger of confusion. Most often, we will denote the maximal ideal of A and the

homomorphism A→ C that correspond to a point p by mp and πp, respectively. �

2.5.6. Nullstellensatz (version 3): Strong Nullstellensatz.strongnull

(i) Let I be an ideal of the polynomial algebra C[x1, . . . , xn], and let V be the affine scheme V (I) in A
n. If a

polynomial g vanishes at every point of V , then I contains a power of g.

(ii) Let A be a finite-type algebra. An element α that is in every maximal ideal of A is nilpotent.

An element α of a ring A is nilpotent if some power αk is zero.

2.5.7. Corollary.eltzero (i) Let P be a prime ideal of the polynomial ring C[x1, . . . , xn]. If a polynomial g vanishes

at every point of V (P ), then g is an element of P . If P is the principal ideal generated by an irreducible

polynomial f and if g vanishes on V (f), then f divides g.

(ii) Let A be a finite-type domain. The zero element is the only element of A that is in every maximal ideal of

A. �

proof of the Strong Nullstellensatz (i) This beautiful proof is due to Rainich, who published it in 1929, under

the pseudonym of Rabinowitsch.

Let g(x) be a polynomial that vanishes identically on V . Since the assertion is trivial when g is zero,

we may assume that g isn’t zero. The Hilbert Basis Theorem tells us that I is a finitely generated ideal; Let

f = f1, . . . , fk be a set of generators. In the n+ 1-dimensional affine space with coordinates (x1, . . . , xn, y),
let W be the locus
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(2.5.8)fgy f1(x) = · · · = fk(x) = 0 and g(x)y − 1 = 0.

Points of W correspond bijectively to maximal ideals of the polynomial algebra C[x1, ..., xn, y] that contain

the ideal J = (f1, ..., fk, gy − 1).

Here is the point: Suppose that we have a solution (x1, ..., xn) = (a1, ..., an) of the equations f(x) = 0.

By hypothesis, g(x) = 0 at every point at which f(x) = 0. So from f(a) = 0, it follows that g(a) = 0. Then

there can be no b such that g(a)b = 1. This means that there is no point (a1, ..., an, b) that solves the equations

(2.5.8). The locus W is empty, and therefore J is the unit ideal of C[x, y] (2.4.10). There are polynomials

p1(x, y), . . . , pk(x, y) and q(x, y) such that

(2.5.9) p1f1 + · · ·+ pkfk + q(gy − 1) = 1.rabinowitz

Let B denote the algebra C[x, y]/(gy− 1). This is the ring obtained by adjoining an inverse y of g(x) to C[x].
Working in B, we substitute g−1 for y into (2.5.9). The equation becomes

p1(x, g
−1)f1(x) + · · ·+ pk(x, g

−1)fk(x) = 1.

We multiply both sides by a large power gN of g to clear denominators. Say that gNpi(x, g
−1) is the polyno-

mial hi(x). Then

h1(x)f1(x) + · · ·+ hk(x)fk(x) = gN (x)

is true in B and in its subring C[x]. This equation shows that gN is in the ideal I .

Part (ii) follows from (i). Say that A is presented as C[x]/I , and let g(x) be a polynomial whose residue in A
is α. Then α is in every maximal ideal of A if and only if g = 0 at all points of V (I). This is version 2 of the

Nullstellensatz. If g = 0 at all points of V (I), then some power gn is in I , and then αn = 0. �

(2.5.10)radicalofideal the radical of an ideal

When do two ideals define the same affine scheme? The Strong Nullstellensatz answers this question.

Let I be an ideal of a ring R. The radical rad I of I is the set of all elements α such that some power αr

is in I .

(2.5.11) rad I = {α ∈ R |αr ∈ I for some r > 0}.raddef

The radical is an ideal. An ideal that is equal to its radical is a radical ideal.

If n is a positive integer, Jn stands for the product of n copies of the ideal J , the ideal generated by

products of length n of elements of J . Its elements are sums of such products.

2.5.12. Lemma.radpower Let I be an ideal of a ring R. Then I ⊂ rad I . If R is noetherian, then (rad I)n ⊂ I when

n is sufficiently large.

proof. It is obvious that I ⊂ rad I . If R is noetherian, then rad I is generated by a finite set of elements,

say by α = {α1, ..., αk}, and for large r, αr
i ∈ I . We can use the same large integer r for every i. Let

n = rk. If e1, ..., ek are integers such that e1 + · · ·+ ek ≥ n, then ei ≥ r for at least one i. So any monomial

β = αe1
1 · · ·α

ek
k of degree n in α will be divisible by at least one αi. Therefore those monomials are in I . The

monomials of degree n generate (rad I)n, so (rad I)n ⊂ I . �

The next corollary follows from the Strong Nullstellensatz.

2.5.13. Corollary.zeroonV Let I and J be ideals in the polynomial algebra C[x1, . . . , xn].

(i) A polynomial g vanishes at every point of V (I) if and only if it is an element of the radical rad I .

(ii) V (I) ⊂ V (J) if and only if rad I ⊃ rad J , and V (I) = V (J) if and only if rad I = rad J . �
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Thus there is a bijective correspondence between radical ideals in the polynomial ring C[x1, ..., xn] and

affine schemes in A
n.

(2.5.14) V (I) = {p | f(p) = 0 if f ∈ I}vofi

rad I = {f | f(p) = 0 if p ∈ V (I)}.

2.5.15. Examples.strongnullex (i) In the affine line A
1 = SpecC[x], the two polynomials x3(x− 1) and x(x− 1)2 have

the same zero set: the point pair {0, 1}, but the principal ideals they generate aren’t equal. The radicals of the

principal ideals they generate are equal to the principal ideal generated by x(x− 1).

(ii) Let I be the ideal of the polynomial algebra C[x, y] in two variables generated by y5 and y2 − x3. The

origin x = y = 0 is their only common zero, and the polynomial x also vanishes at the origin. The Strong

Nullstellensatz predicts that a power of x is in I . This is verified by the following equation:

yy5 − (y4 + y2x3 + x6)(y2 − x3) = x9.

(iii) We may regard the set of pairs A,B of n× n matrices as points of an affine space A
2n2

with coordinates

aij , bij , 1 ≤ i, j ≤ n. The pairs of commuting matrices, AB = BA, form an affine scheme in A
2n2

, the locus

of common zeros of the n2 polynomials pij that compute the entries of the matrix AB −BA:

(2.5.16) pij(a, b) =
∑

ν

aiνbνj − biνaνj .commmateq

If I denotes the ideal of the polynomial algebra C[a, b] generated by the polynomials pij , V (I) identifies with

the set of pairs of commuting complex matrices. The Strong Nullstellensatz asserts that if a polynomial g(a, b)
vanishes on every pair of commuting matrices, then some power of g is in I . Is g itself in I? It is a famous

conjecture that I is a prime ideal, and that therefore this is true. Proving this conjecture would establish your

reputation as a mathematician, but I don’t recommend spending very much time on it right now. �

(2.5.17) the nilradicalthenilradical

A ideal I of a ring R is nilpotent if some power Ik is the zero ideal. The nilradical N of a ring R is the set

of nilpotent elements of R, the set of elements z such that some power zn is zero. The nilradical is the radical

of the zero ideal.

2.5.18. Proposition.intersect-

primes

Let N be the nilradical of a noetherian ring R.

(i) N is nilpotent.

(ii) N is the intersection of the prime ideals of R.

proof. See Lemma 2.5.12 for (i). We prove (ii). Let x be a nilpotent element of R. Then some power of x is

zero. Since the zero element is in every prime ideal, x is in every prime ideal. We show that if an element x
isn’t nilpotent, there is a prime ideal that doesn’t contain it. Let S be the set of ideals of R that don’t contain a

power of x. The zero ideal is one such ideal, so S isn’t empty. Therefore S contains a maximal member I . We

claim that I is a prime ideal, and to show this, we show that if J and K are ideals strictly larger than I , then

JK is not contained in I . Since I is a maximal member of S , J and K aren’t members of S . They contain

powers of x, say xk ∈ J and xℓ ∈ K. Then xk+ℓ is in JK but not in I . Therefore JK 6⊂ I . �

2.5.19. Corollary.powerzero If a noetherian ring contains just one prime ideal, then that ideal is nilpotent. �

Note. Using Zorn’s Lemma, one can prove that the nilradical is the intersection of the prime ideals without

the assumption that R be noetherian.
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2.6 Varieties in the Affine Planevsinplane

In this section, R denotes the polynomial ring C[x, y] in two variables.

2.6.1. Theorem.primetwovar (i) The varieties in the affine plane A2 are: the affine plane A2 itself, the affine plane curves,

and the points.

(ii) The prime ideals of R are: the zero ideal, the principal ideals generated by irreducible polynomials, and

the maximal ideals.

For the proof, we embed the one-variable polynomial ring C[x] into its field of fractions F = C(x), the field

of rational functions in x, and we study R as a subring of the one-variable polynomial ring F [y]. This is a

useful method because F [y] is a principal ideal domain. Its algebra is simpler.

We call a nonzero polynomial f(x, y), an element of C[x, y], primitive if it has no factor that is a polyno-

mial in x alone. Every nonzero element of F [y] can be written as r(x)h(x, y), where r(x) is an element of F
and h(x, y) is a primitive polynomial. This expression is unique up to scalar factor. Let’s agree that when we

say that two nonzero polynomials f and g have no common factor, we mean that they have no common factor

except constants.

2.6.2. Lemma.nocommon-

factor

Let f(x, y) and g(x, y) be nonzero elements of R with no common factor. Then their only

common divisors in F [y] are elements of F .

proof. Suppose given an irreducible element q of F [y] which divides both f and g in F [y]. An irreducible

element isn’t allowed to be a unit. Since nonzero elements of F are units in F [y], we may assume that q is

a primitive polynomial. Since q is irreducible in F [y], it is also irreducible in R, and therefore it is a prime

element of the unique factorization domain R. Since q divides f in F [y], there is a polynomial r(x) in C[x]
such that q divides rf in R. Since q is irreducible and r is a unit in F [y], q doesn’t divide r in F [y] or in in R.

So q divides f . Similarly, q divides g. So f and g have a common factor. �

2.6.3. Lemma.quotfindim Let f and g be nonzero elements of R with no common factor. The quotient algebra R/(f, g)
is a finite-dimensional complex vector space.

proof. If f and g have no common factor, the previous lemma shows that their greatest common divisor in

F [y] is 1. Since F [y] is a principal ideal domain, we can write 1 = p0f + q0g for some p0 and q0 in F [y]. The

coefficients of p0 and q0 have denominators that are polynomials in x. Clearing those denominators gives us a

relation of the form u(x) = pf + qg with u in C[x] and p, q in R.

Similarly, by studying the embedding of R into the ring F ′[x], where F ′ is the field of rational functions

in y, we obtain a relation of the form v(y) = p′f + q′g. Then both u(x) and v(x) are in the ideal (f, g), and

by the mapping property of quotients, there is a surjective homomorphism R/(u, v)→ R/(f, g):

R −−−−→ R/(f, g)
y

∥∥∥

R/(u, v) −−−−→ R/(f, g)

If u(x) and v(y) have degrees r and s, respectively, the residues of the monomials xiyj with i < r and j < s
form a basis of R/(u, v). So R/(u, v) is finite-dimensional. Since R/(u, v) maps surjectively to R/(f, g),
that ring is also finite-dimensional. �

proof Theorem 2.6.1 (ii) The zero ideal is prime because R is a domain, an irreducible polynomial generates a

prime ideal because R is a unique factorization domain, and a maximal ideal is a prime ideal.

Let P be a nonzero prime ideal of R, and let h be a nonzero element of P . Since P is a prime ideal,

it contains an irreducible factor f of h. Then P contains the principal ideal (f). If P = (f) we are done.

Otherwise let g be an element of P that is not in (f). Since f is irreducible and doesn’t divide g, f and g have

no common factor. Lemma 2.6.3 shows that R/(f, g) is a finite-dimensional algebra that maps surjectively to

R/P . Therefore R/P is a finite-dimensional domain. A domain that is a finite-dimensional complex vector

space is a field, so P is a maximal ideal, and because C is algebraically closed, R/P ≈ C.

Part (i) is the translation of (ii) to varieties. �
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2.7 The Zariski Topology IIzar

Review. Let X be a topological space. The complement of a subset S of X is the set of elements of X not

in S. The closure S of S is the smallest closed subset of X that contains S. A subset of X whose closure is

equal to X is a dense subset.

A subset X of a topological space S is usually made into a topological space by giving it the induced

topology. The open (or closed) subsets in this topology are the intersections of X with open (or closed)

subsets of S. A subset, with its induced topology, is called a subspace of X .

In Chapter 1, we defined the Zariski topology on affine space. The closed subsets of An are the affine

schemes. The Zariski topology on a closed subvariety X of A
n is the topology induced from the Zariski

topology on A
n. Since a closed subvariety X is a closed subset of An, a subset Y of X will be closed if and

only if it is closed in A
n. So X is a closed subspace of An.

2.7.1. Example.ztopdimone (The Zariski topology on a plane affine curve.) The proper closed subsets of a plane affine

curve X are its nonempty finite subsets. For, say that X = SpecA, where A = C[x, y]/(f) and f is an

irreducible polynomial. If Z is a proper closed subset of X , there must be a polynomial g not divisible by f
that vanishes on Z. The equations f = g = 0 in A

2 have finitely many common solutions (Lemma 2.6.3 and

Proposition 2.2.3). �

One can define the Zariski topology on an affine variety X = SpecA also when A is a finite-type domain

without a chosen presentation. We denote the maximal ideal of A that corresponds to a point p of X by mp, as

usual. Then a subset V is closed in X if there is an ideal J of A such that V is the set

(2.7.2) VX(J) = {p ∈ X | J ⊂ mp}defineVofJ

If A is presented as C[x]/I and J ′ denotes the inverse image of J in C[x], the set VX(J) is equal to the set

VAn(J ′), which we have been denoting by V (J ′), of An.

The next corollary follows from the Strong Nullstellensatz:

2.7.3. Corollary.subsofspecA Let J1 and J2 be ideals of a finite-type domain A, and let X = SpecA. Then VX(J1) ⊂
VX(J2) if and only if rad J1 ⊃ rad J2, and VX(J1) = VX(J2) if and only if rad J1 = rad J2. �

A topological space X is said to have the descending chain condition on closed subsets if every strictly

descending, chain C1 > C2 > · · · of closed sets is finite. A space with th descending chain condition on

closed subsets is called a noetherian space. The descending chain condition on closed sets is equivalent with

the ascending chain condition on open sets.

2.7.4. Corollary.dccquasi-

compact

A noetherian topological space is quasicompact: Every open covering has a finite subcov-

ering. �

2.7.5. Proposition.deschain If A is a finite-type domain, its spectrum X = SpecA is a noetherian space.

This follows from the ascending chain condition for ideals of the noetherian ring A. �

The use of the descending chain condition for closed subvarieties is analogous to the use of the ascending

chain condition for ideals. Every nonempty set of closed subsets of a noetherian space has a minimal member.

(2.7.6)irrclosed irreducible closed sets

2.7.7. Lemma.irredlemma The following conditions on a nonempty closed subset Z of a topological space X are

equivalent.

(i) Z is not the union of proper closed subsets: If C and D are closed subsets of Z, then Z = C or Z = D.

(ii) If C and D are closed subsets of X and if Z ⊂ C ∪D, then Z ⊂ C or Z ⊂ D.

(iii) The intersection U ∩ V of nonempty open subsets U and V of Z is nonempty.

(iv) Every nonempty open subset of Z is dense. �
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2.7.8. Definition.defirred A nonempty subset Z of a topological space X that satisfies these conditions is an

irreducible subset.

This concept is useful primarily for noetherian topological spaces. The only irreducible subsets of a Haus-

dorff space are the points.

2.7.9. Corollary.closureirred The closure Z of an irreducible subset Z of a topological space is irreducible.

proof. Suppose that Z is the union C ∪D of closed sets C and D. Then Z is the union of the sets C ∩ Z and

D ∩ Z, which are closed in Z. Therefore Z is one of the two. Say that Z = C ∩ Z. Then Z ⊂ C, and since

C is closed, Z ⊂ C, and since C ⊂ Z as well, C = Z. �

2.7.10. Proposition.unionirred In a noetherian topological space, every closed subset is the union of finitely many

irreducible closed subsets.

proof. Suppose that a closed subset C0 of a noetherian space X isn’t the union of finitely many irreducible

closed sets. Then C0 isn’t irreducible, so it is a union C1 ∪ D1, where C1 and D1 are proper closed subsets

of C0. Since C0 isn’t a finite union of irreducible closed sets, C1 and D1 cannot both be finite unions of

irreducible closed sets. Say that C1 isn’t such a union. We replace C0 by C1 and repeat the argument, to

construct an infinite, strictly descending chain C0 > C1 > · · · . This contradicts the hypothesis that X is

noetherian. �

2.7.11. Lemma.irredprime The irreducible closed subsets of an affine variety X = SpecA are those of the form

VX(P ), where P is a prime ideal of A. They are the closed subvarieties of X .

proof. Let Y be a closed subset of X , say Y = VX(J). We may assume that J is a radical ideal of A (2.7.3).

If J is not a prime ideal, there will be ideals K1,K2 such that J < Ki, but J = K1 ∩K2. Since J is a radical

ideal, and since the radical of K1 ∩K2 is radK1 ∩ radK2, we may assume that Ki are radical ideals. Then

VX(J) > VX(Ki), but VX(J) = VX(K1) ∪ VX(K2). Therefore Y is not irreducible. Conversely, if J is a

prime ideal, such ideals Ki do not exist, and therefore Y is irreducible. �

Note: In a primitive sense, the geometry of an affine scheme X = SpecA can be thought of as given by closed

sets and incidence relations, the inclusion of one closed subset into another, as when a point lies on a line in

plane geometry. A finer study of the geometry takes into account things such as tangency and singularity. But it

is reasonable to begin by studying incidences C ′ ⊂ C among closed subvarieties. Proposition 2.7.11 translates

such incidences into inclusions P ′ ⊃ P in the opposite direction among prime ideals of the coordinate algebra

A. This is one reason that prime ideals are important. �

2.8 Regular Functions on Affine Varietiesregfn

A complex polynomial defines a complex valued function on the affine space A
n, and distinct polynomials

define distinct functions. So when the scalars are complex numbers, there is no need to be careful about the

distinction between a formal polynomial and the polynomial function it defines.

Let A be a finite-type domain and let X = SpecA. The elements of A define functions on X called

regular functions. We denote an element of A and the function it defines by the same letter. To define the

function associated to an element α, we let πp : A → C be the homomorphism to C that corresponds to a

point p of X . By definition, the value at p of the function α is πp(α):

(2.8.1) α(p) = πp(α).pipaap

The relation between regular functions and polynomial functions is explained as follows. First, the coor-

dinate ring of affine space A
n is the polynomial ring C[x1, ..., xn]. A regular function is a function defined

by a polynomial g(x). The homomorphism πp : C[x] → C that corresponds to a point p = (a1, ..., an) is

evaluation at that point. So g(p) = g(a1, ..., an) = πp(g), which agrees with (2.8.1).

Next, suppose that A is presented as C[x]/I . The element α will be the residue of a polynomial g (that

isn’t uniquely determined). We can restrict the function g on A
n to the subset X , to obtain the function α on
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X . A point p of X determines homomorphisms πp : C[x] → C and πp : A → C, and πp(α) = πp(g) (see

Diagram 2.5.3). So for p in X ,

(2.8.2) α(p)
defn
= πp(α) = πp(g)

defn
= g(p).redefinefn

The regular functions on a closed subvariety X of the affine space A
n are the restrictions of polynomial

functions.

2.8.3. Corollary.describemax Let A be a finite-type domain, and let p be a point of SpecA. An element α of A is in the

maximal ideal mp if and only if α(p) = 0. �

2.8.4. Note.scheme-

function

One can use formula (2.8.1) to define the function associated to an element α of a finite-type

algebra A, whether or not A is a domain. However the function may not determine the algebra. For instance, if

A is the quotient C[x]/(x2) of a polynomial algebra in one variable, elements of A have the form α = a0+a1x,

with ai ∈ C. Here SpecA consists of a single point p, and πp(a0 + a1x) = a0. �

2.9 Morphisms of Affine Varietiesmorphism

The word “morphism” is used to describe the allowed maps between affine varieties. Those maps are the ones

that can be defined using regular functions.

If Y
u
−→ X is a map of sets and g is a function on X , composition with u produces a function g ◦ u on Y :

(2.9.1)defpullback

Y
g◦u
−−−−→ C

u

y
∥∥∥

X
g

−−−−→ C

The composition with u defines a homomorphism from the algebra of functions on X to the algebra of func-

tions on Y that is often denoted by u∗ and is called a pullback:

Functions(Y )
u∗

←− Functions(X)

(see 2.9.1). Thus by definition, u∗g = g ◦ u. (An asterisk in the superscript position is often used to indicate

that the direction of an arrow has been reversed.)

2.9.2. Definition.defmorphism Let X and Y be affine varieties. A morphism Y
u
−→ X is a map such that the pullback of

every regular function on X is a regular function on Y .

2.9.3. Proposition.morphhomo Let A and B be the coordinate algebras of the affine varieties X and Y , respectively.

Morphisms Y
u
−→ X correspond bijectively to algebra homomorphisms in the opposite direction B

ϕ
←− A.

For example, an embedding of an affine variety X = SpecA into affine space, X ⊂ A
n, corresponds to a

surjective homomorphism A ← C[x1, ..., xn]. The affine blowup A
2
x,z → A

2
x,y that sends (x, z)  (x, y) =

(x, xz) described in (1.10.4) corresponds to the ring homomorphism C[x, z]
ϕ
←− C[x, y] defined by ϕ(x) = x,

ϕ(y) = xz.

As this proposition shows, there is little difference between the theory of affine varieties and the theory

of commutative rings. But the fact that the arrows Y
u
−→ X and B

ϕ
←− A are in opposite directions can be

confusing.

proof of Proposition 2.9.3. We drop some parentheses to minimize clutter. Given a morphism X
u
←− Y ,

we define a homomorphism A
ϕ
−→ B. If α is an element of A, a regular function on X , we define ϕα =

α ◦ u. Since u is a morphism, ϕα is a regular function on Y , an element of B. The map ϕ thus defined is a

homomorphism, and it satisfies the rule

(2.9.4) [ϕα](y) = α(uy).phialpha
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In the other direction, we suppose given a homomorphism A
ϕ
−→ B, and we define a morphism X

u
←− Y .

Let y be a point of Y . Evaluation of functions at y gives us a homomorphism πy : B → C. The composed

map πyϕ is a homomorphism A → C. According to the Nullstellensatz, this homomorphism is evaluation of

functions at a point x of X , and that point is defined to be the image of y: uy = x Thus πx is a homomorphism

A→ C, and u is defined by the relation πx = πyϕ. Then if α is an element of A and if we evaluate its image

ϕα in B at y (2.8.1), we get formula (2.9.4) again:

[ϕα](y) = πy(ϕα) = πxα = α(x)

By definition, [u∗α](y) = α ◦ u(y) = α(x). So u∗α = ϕα is an element of B, a regular function on Y , and u
is a morphism.

2.9.5. Corollary.morphmax Let Y
u
−→ X be the morphism of affine varieties that corresponds to an algebra homomor-

phism A
ϕ
−→ B. Let y be a point of Y and let x = uy be its image in X . Then πx = πy ◦ϕ, and mx = ϕ−1

my .

�

2.9.6. Proposition.morphcontin A morphism Y
u
−→ X of affine varieties is a continuous map in the Zariski topology.

proof. Say that X = SpecA and Y = SpecB. The morphism u corresponds to an algebra homomorphism

A→ B. Let C be the closed subset VX(J) of X , and let J ′ be the extended ideal JB of B. Then u−1C is the

closed set VY (JB). To prove this, one verifies that the following conditions on a point y are equivalent:

uy ∈ C, J ⊂ muy = (my ∩A), JB ⊂ my, y ∈ VY (JB)

�

The next proposition spells the definition of morphism out in terms of equations.

2.9.7. Proposition.mapbtoa Let (f1, . . . , fr) be an ideal of the polynomial algebra C[x1, . . . , xk], and let A =
C[x]/(f). Homomorphisms from A to an arbitrary algebra B correspond bijectively to sets of elements

β1, . . . , βk of B such that

f1(β) = · · · = fr(β) = 0.

This is an important principle:

• To map the algebra A = C[x]/(f) to an algebra B means to solve the equations f = 0 in B.

proof. We compose a map A
ϕ
−→ B with the canonical map C[x]

τ
−→ A, obtaining a map Φ : C[x]→ B.

C[x]
Φ

−−−−→ B

τ

y
∥∥∥

A
ϕ

−−−−→ B

The map Φ is obtained by substituting some elements βj of B for the variables xj . Since the polynomials

f1, ..., fr are in the kernel of τ , they are in the kernel of Φ too, which means that fi(β) = 0. Conversely, if Φ
is a map C[x]→ B whose kernel contains f1, . . . , fr, the Mapping Property of quotients shows that it has the

form ϕτ . �

2.9.8. Example.cuspnormx (resolving a cusp curve) The equation y2 = x3 defines a plane curve C = SpecA with a

cusp at the origin, where A = C[x, y]/(y2 − x3). The homomorphism A
ϕ
−→ C[t] that sends x  t2 and

y  t3 defines a morphism C
u
←− A

1
t that sends a point t of A1 to the point (x, y) = (t2, t3) of C. This

morphism is a bijective map whose inverse function v sends a point (x, y) 6= (0, 0) of C to the point t = y/x,

and sends (x, y) = (0, 0) to the point t = 0. Both u and v are continuous, and therefore are homeomorphisms

in the Zariski topology (and in the classical topology). However, ϕ isn’t an algebra isomorphism because y/x
isn’t an element of A. There is no inverse homomorphism C[t] → A. Therefore v isn’t a morphism, and u
isn’t an isomorphism.
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(2.9.9)boldloc localization

2.9.10. Definition.deflocaliz If s is a nonzero element of a domain A, the ring A[s−1] obtained by adjoining an inverse

of s to A will be called a simple localization, or just a localization of A. and will often be denoted by As. If

A is a finite-type algebra then Xs = SpecAs is a simple localization, or a localization of X = SpecA.

2.9.11. Lemma.specAs (i) The homomorphism A → As defines an injective morphism X
u
←− Xs, whose image is

the open set of points of X at which the function s isn’t zero.

(ii) When Xs is identified with its image in X , the Zariski topology on Xs is the induced topology from X , so

Xs becomes an open subspace of X .

This lemma gives us a way to construct non-affine varieties by identifying common localizations. For example,

the projective line P
1 can be constructed from two affine lines U0 = SpecC[t] and U1 = SpecC[u] by

identifying the open subsets U0
t = C[t, t−1] and U1

uC[u, u
−1] of U0 and U1, respectively, using the rule

u = t−1.

However, one must be careful when doing this. One could also identify those localizations using the rule

t = u, but ’forgetting’ to identify t = 0 with u = 0. The result of this would be an affine line in which the

origin is replaced by a pair of points. We’ll come back to this example later.

figure

proof.of Lemma 2.9.11. (i) Let p be a point of X , and let A
πp

−→ C be the corresponding homomorphism. If

the image πp(s) isn’t zero, πp extends uniquely to a homomorphism As → C that sends s−1
 πp(s)

−1. This

gives us a point of Xs whose image via the morphism Xs
u
−→ X is p. On the other hand, if πp(s) = 0, then

πp does not extend. So

Xs ≈ X − VX(s).

The effect of adjoining the inverse of an element s is to throw out the points of X at which s vanishes.

(ii) If C is closed in X , then C ∩Xs is closed in Xs. Conversely, let C ′ be a closed subset of Xs. We must

show that C ′ is the intersection C ∩Xs where C is closed in X . Say that C ′ = VXs
(I ′) for some ideal I ′ of

As. The intersection I = I ′ ∩ A is an ideal of A. Let C = VX(I), let p be a point of C ′, and let mp and m
′
p

denote the maximal ideals of p in A and As, respectively. Then mp = m
′
p ∩ A. Since p is in C ′ = VXs

(I ′),
I ′ ⊂ m

′
p, and therefore I ⊂ mp. So p ∈ C, and therefore C ′ = C ∩Xs. �

2.9.12.punctline Example. (the punctured line as a variety) The punctured affine line A1−{0} corresponds bijectively

to the spectrum of the Laurent polynomial ring C[t, t−1]. �

Recapitulating, morphisms SpecB
u
−→ SpecA of affine schemes correspond to algebra homomorphisms

A
ϕ
−→ B. A morphism is an isomorphism if and only if there is an inverse morphism, which is true if and only

if ϕ is an isomorphism of algebras. An automorphism of a variety X is an isomorphism X → X .

2.10 Finite group actionsgrpi

Let G be a finite group of automorphisms of a finite-type domain B. An element of B is invariant if it is fixed

by all σ in G. The invariant elements form a subalgebra of B that is often denoted by BG. We will show that

BG is a finite-type algebra, and we describe the morphism SpecB = Y → X = SpecBG defined by the

inclusion BG ⊂ B.

2.10.1. Example.actonplaneex Let B be the polynomial ring C[y1, y2], let σ be the automorphism defined by σy1 = ζy1
and σy2 = ζ−1y2, with ζ = e2πi/n, and let G be the cyclic group of order n generated by σ. A monomial

m = yi1y
j
2 is invariant if and only if n divides i − j, and an invariant polynomial is a linear combination of
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invariant monomials. The ring A = BG of invariant polynomials is generated by three elements u1 = yn1 ,

u2 = yn2 , and w = y1y2, and that A is isomorphic to the quotient of the polynomial ring C[u1, u2, w], modulo

the principal ideal generated by h = wn − u1u2. You will be able to show this.

Let Y denote the affine plane SpecB, and let X = SpecA. The group G operates on Y , and except

for the origin, which is a fixed point, the orbit of a point (y1, y2) of Y consists of the n points (ζiy1, ζ
−iy2),

i = 0, . . . , n − 1. In all cases, the points of X correspond bijectively to G-orbits in Y . To verify this, we

fix complex numbers u1, u2, w with wn = u1u2. If u1 6= 0, the equation u1 = yn1 has n solutions for y1,

and then y2 is determined by the equation w = y1y2. Similarly, there are n points in the fibre if u2 6= 0. If

u1 = u2 = 0, then w = y1 = y2 = 0. �

The next theorem shows that the description of X as the set of G-orbits in Y is true for any finite group

operation.

2.10.2. Theorem.groupoper-

one

Let B be a finite-type domain, let G be a finite group of automorphisms of B, and let A

be the subalgebra BG of invariant elements of B. Let Y = SpecB and X = SpecA.

(i) A is a finite-type domain and B is a finite A-module.

(ii) G operates on Y .

(iii) The morphism Y → X defined by the inclusion A ⊂ B is surjective, and its fibres are the G-orbits of

points of Y .

Thus if we denote the set of G-orbits in Y by Y/G, there is a bijective map Y/G ≈ X .

proof. (i) The structure of the proof is interesting. One constructs a finite-type algebra R, with R ⊂ A ⊂ B,

such that B is a finite R-module. Using this, one shows that A is a finite-type algebra.

Let {z1, . . . , zk} be the G-orbit of an element z = z1 of B. The coefficients si of the polynomial

(2.10.3) f(t) = (t− z1) · · · (t− zk) = tk − s1t
k−1 + · · · ± skspoly

are the elementary symmetric functions in the orbit {z1, ..., zk}. They are invariant, so f(t) has coefficients in

A, and it has z as a root. The equation f(z) = 0 allows us to write any power of z as a polynomial in z with

coefficients in A, of degree less than k.

We choose a finite set of generators y = {y1, . . . , yr} for the algebra B. If the order of the orbit of yj
is kj , yj will be the root of a monic polynomial fj of degree kj with coefficients in A. Let R denote the

finite-type algebra generated by the coefficients of all of the polynomials fj . The equation fj(yj) = 0 allows

us to write a power ynj of yj as a polynomial p(yj) in yj with coefficients in R, such that the degree of p is less

than kj . Using these polynomials, we can write every monomial ye11 · · · y
er
r as a polynomial p(y1, ..., yr) with

coefficients in R whose degree in yj is ≤ kj . Since y generates B, we can write every element of B as such

a polynomial. So the finite set of monomials ye11 · · · y
er
r with ej < kj spans B as an R-module. Therefore

B is a finite R-module. The invariant algebra A is a subalgebra of B that contains R. So when regarded

as an R-module, A is a submodule of the finite module B. Since R is a finite-type algebra, it is noetherian.

Therefore A is also a finite R-module. When we put a finite set of algebra generators for R together with a

finite set of R-module generators for A, we obtain a finite set of algebra generators for A. So A is of finite

type. And since B is a finite R-module, B is also a finite A-module.

(ii) A group element σ is an automorphism B → B that defines an automorphism Y ←− Y . We denote the

automorphism of Y by σ too. This gives the operation of G on Y . However, there is a point that should be

mentioned.

Let’s say that we write the operation of G on B on the left, so that σ maps an element b to σb. Then if

σ and τ are two group elements, στb means first operate by τ : (στ)b = σ(τb). We interpret a point y of

Y = SpecB as a homomorphism B
πp

−→ C. The operation of σ on homomorphisms to C is composition with

σ. It sends πy to πy ◦ σ (see (2.9.5)). The operation on homomorphisms is on the right. For operations on the

right, στ acts as first operate by σ: πy(στ) = (πyσ)τ .

• If G operates on the left on B, it operates on the right on SpecB.
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(iii) The diagram of algebra homomorphisms

(2.10.4)

B
σ

−−−−→ B

∪

x ∪

x

A A

actonB

gives us a diagram of morphisms

(2.10.5)

Y
σ

←−−−− Y
y

y

X X

actonX

which shows that the elements of Y forming a G-orbit have the same image in X , and therefore that Y/G
maps to X . We show that this map is bijective. To show that the map Y/G → X is injective, we use the

following lemma.

2.10.6. Lemma.arbvals (i) Let p1, . . . , pk be a finite set of distinct points of affine space A
n, and let c1, . . . , ck be

complex numbers. There is a polynomial f(x1, . . . , xn) such that f(pi) = ci for i = 1, . . . , n.

(ii) Let B be a finite-type algebra, let q1, . . . , qk be points of SpecB, and let c1, . . . , ck be complex numbers.

There is an element β in B such that β(qi) = ci for i = 1, . . . , k. �

Note that if b is an element of B, the product and the sum of the elements σb,

(2.10.7)
∏

σ∈G

σb and
∑

σ∈G

σbinvarelts

are invariant elements.

Let O1 and O2 be distinct orbits. There is an element b of B such that at every point of O1 its value is 0,

and at every point of O2 its value is 1. Then the invariant element β =
∏

σ σb also evaluates to 0 at every point

of O1 and to 1 on every point of O2. If pi denotes the image in X of the orbit Oi, then β is in the maximal

ideal mp1
, but not in mp2

. The images of the two orbits are distinct. Therefore the map Y/G→ X is injective.

To show that the map Y/G → X is surjective, it suffices to show that the map Y → X is surjective, and

for this we use the next lemma.

2.10.8. Lemma.extideal If I is an ideal of the invariant ring A, and if the extended ideal IB is the unit ideal of B,

then I is the unit ideal of A.

As before, the extended ideal IB is the ideal of B generated by I .

proof of Lemma 2.10.8. If IB = B, there will be an equation
∑

i zibi = 1, with zi in I and bi in B. The sum

αi =
∑

σ σbi is invariant, so it is an element of A, as are the elements zi. Then

∑

σ

1 =
∑

σ

σ(1) =
∑

σ,i

σ(zibi) =
∑

i,σ

ziσbi =
∑

i

zi
∑

σ

σbi =
∑

i

ziαi

Because the elements zi are in I , the right side
∑

i ziαi is in I , and the left side
∑

σ 1 is the order of the group,

which an invertible element of A. So I is the unit ideal. �

We prove surjectivity of the map Y → X now. Let p be a point of X . The extended ideal mpB is not the

unit ideal. So it is contained in a maximal ideal mq of B, where q is a point of Y . Then

(2.10.9) mp ⊂ (mpB)∩A ⊂ mq ∩A.mpinmqcapA

Here mq ∩ A is an ideal of A, and it isn’t the unit ideal because 1 isn’t in mq . Since mp is a maximal ideal,

mp = mq ∩A. This means that the point q maps to p in X (2.9.5). So the map Y → X is surjective. �
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2.11 Tensor Products

tensprod We have collected the facts about tensor products that we will use in subsequent chapters here. We apolo-

gize for the fact that this material is rather dry.

Let U and V be modules over a ring R. The tensor product U ⊗RV of U and V is an R-module

generated by elements u ⊗v called tensors, with u in U and v in V . Its elements are combinations of tensors

with coefficients in R. Since we can absorb a coefficient from R into one of the factors of a tensor, every

element of U ⊗RV can be written as a finite sum
∑

ui ⊗vi.

The module of relations among the tensors is generated by the following bilinear relations:

(2.11.1)bilinrels (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗v , u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2

and ur ⊗ v = u⊗ rv

for all u in U , v in V , and r in R. The tensor symbol ⊗ is used as a reminder that the elements u ⊗ v are

manipulated using these relations.

There are a few remarks to be made.

(1) The last of the bilinear relations states that scalars move through the tensor symbol. This is why we write

the term on the right of that relation as ur ⊗ v instead of as ru⊗ v. As written, the relations define the tensor

product of a right module U , a module in which scalars act on the right, and a left module V . Since we are

working with commutative rings, right modules can be made into left modules simply by setting ru = ur.

Let’s agree that unless stated otherwise, scalar multiplication on the two sides supposed to be equal:

ru = ur

One can’t do this when the ring is noncommutative, and there are situations in which a right R-module is also

a left module over a different commutative ring.

(2) The tensor product U ⊗ V is made into a left R-module on using the structure of U as left module:

(2.11.2) r(u⊗ v) = (ru)⊗ vtensormodule

If there was no left module structure on U , the tensor product wouldn’t be a left module.

(3) There is no close relation between the tensor product U ⊗R V and the product module U ×V whose

elements are pairs (u, v), with componentwise addition and scalar multiplication. For instance, if U and V are

free modules of ranks r and s, then U ⊗R V is free of rank is rs, while U×V is free of rank r + s.

(4) On the other hand,

there is an obvious map U×V
β
−→ U ⊗RV from the product set to the tensor product that sends (u, v) to

u ⊗ v. The fact that the relations among tensors are the bilinear relations shows that this map is bilinear. In

fact, it is a universal bilinear map: Any R-bilinear map U×V
f
−→M to a module M can be obtained from a

module homomorphism U ⊗RV
f̃
−→M by composition, f = f̃ ◦ β: U×V

β
−→ U ⊗RV

f̃
−→M . �

2.11.3. Proposition.canonisom There are canonical isomorphisms

• U ⊗R R ≈ U , u⊗ r! ur

• (U ⊕ U ′)⊗R V ≈ (U ⊗R V )⊕ (U ′ ⊗R V ), (u1 + u2)⊗ v! u1 ⊗ v + u2 ⊗ v

and if R is commutative, then

• U ⊗R V ≈ V ⊗R U , u⊗ v! v ⊗ u

• (U ⊗R V )⊗R W ≈ U ⊗R (V ⊗R W ), (u⊗ v)⊗ w! u⊗ (v ⊗ w)

The proofs are very simple. We verify the “distributive law” (U ⊗R V )⊕ (U ′⊗R V ) ≈ (U ⊕U ′)⊗R V as

an example. The left side is generated by tensors u⊗v and u′⊗v, and the relations are the bilinear relations in

the two summands. The right side is generated by tensors x⊗ v, where x = u+ u′, with the bilinear relations

(x1 + x2)⊗ v = x1 ⊗ v + x2 ⊗ v, x⊗ (v1 + v2) = x⊗ v1 + x⊗ v2, xr ⊗ v = x⊗ rv)

The relations defining the right side hold on the left side, and setting x = u+ 0 and x = 0+ u′ shows that the

relations defining the left side hold in the right side. �
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2.11.4. Corollary.prodbasis If U and V are free R-modules with bases {ui} and {vj}, respectively, then U ⊗RV is a

free R-module with basis {ui ⊗ vj}. �

2.11.5. Proposition.rexacttensor The tensor product operation is right exact. If

U
f
−→ U ′ g

−→ U ′′ → 0

is an exact sequence of R-modules, then for any R-module V , the sequence

U ⊗RV
f⊗id
−→ U ′ ⊗RV

g⊗id
−→ U ′′ ⊗RV → 0

is exact.

proof. Let Z be the image of f ⊗ id, and let W = (U ′ ⊗RV )/Z. The composed map (g ⊗ id)(f ⊗ id)
is zero, so there is an induced map W → U ′′⊗ V . We must show that this map is invertible. To define its

inverse, we define a bilinear map U ′′×V → W . Given a tensor u′′ ⊗ v in U ′′⊗RV , we choose u′ in U ′

such that g(u′) = u′′, and we map u′′ ⊗ v to the residue of u′ ⊗ v in W . This is well-defined because if u′
1

and u′
2 are elements of U ′ such that g(u′

1) = g(u′
2), then u′

1 − u′
2 is in the image of f , and (u′

1 − u′
2) ⊗ v is

in Z. The bilinear relations hold in W because they hold in U ′ ⊗R V , so this map corresponds to a module

homomorphism U ′′ ⊗RV →W that inverts g ⊗id. �

2.11.6. Corollary.tensorrels (i) Let U, V be R-modules, and suppose that U is presented as Rm/ARn by an exact

sequence

Rn A
−→ Rm → U → 0

Then U ⊗R V ≈ V m/AV n.

(ii) With notation as in (i), suppose that V is presented as Rk/BRℓ by an exact sequence

Rℓ B
−→ Rk → V → 0

Then the map Rm ⊗R Rk → U ⊗R V is surjective. Its kernel is generated by the images of the two maps

Rn ⊗R Rk A⊗I
−→ Rm ⊗Rk and Rm ⊗R Rℓ I⊗B

−→ Rm ⊗Rk.

proof. (ii) We form a diagram with exact rows and columns:

Rn ⊗Rℓ −−−−→ Rm ⊗Rℓ −−−−→ U ⊗Rℓ −−−−→ 0
y

y
y

Rn ⊗Rk −−−−→ Rm ⊗Rk −−−−→ U ⊗Rk −−−−→ 0
y

y
y

Rn ⊗ V −−−−→ Rm ⊗ V −−−−→ U ⊗ V −−−−→ 0
y

y
y

0 0 0

Then the assertion follows from a general fact. For any diagram

A −−−−→ A′ −−−−→ A′′ −−−−→ 0
y

y
y

B −−−−→ B′ −−−−→ B′′ −−−−→ 0
y

y
y

C −−−−→ C ′ −−−−→ C ′′ −−−−→ 0
y

y
y

0 0 0
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whose rows and columns are exact, the composed map B′ → C ′′ is surjective, and its kernel is the sum of the

images of A′ and B in B′. The verification is a diagram chase. �

Example.tensornotex-

act

This example shows that the tensor product operation isn’t exact. Let R = C[x], and let C denote

the R-module R/xR. When we tensor the exact sequence 0 → R
x
−→ R → C → 0 with C, the result is the

non-exact sequence 0→ C
0
−→ C→ C→ 0 �

(2.11.7)extendscalars extension of scalars in a module

Let R
ρ
−→ S be a ring homomorphism. An S-module N can be made into an R-module, in which scalar

multiplication by an element a of R is defined to be multiplication by its image in S:

(2.11.8) ax
def
= ρ(a)xrestrscalar

This operation is called restriction of scalars.

For example, let ρ be the map C[t]→ C that evaluates a polynomial p at 0. Restriction of scalars makes a

complex vector space V into a C[t]-module in which scalar multiplication is defined by p(t)v = p(0)v. This

example is trivial, as are all examples of the simple operation of restriction of scalars.

An R,S-bimodule is an abelian group that is a left R-module and a right S-module, and such that left and

right multiplications commute:

(2.11.9)leftright-

commute

r(ms) = (rm)s

For example, if we are given a homomorphism R → S, the ring S becomes an R,S-bimodule in which

the left operation of R is by restriction of scalars. Then, given a right R-module M , the tensor product

M ′ = M ⊗RS becomes a right S-module, multiplication by s ∈ S being (m⊗ a)s = m⊗ (as). This gives a

functor

R−modules
⊗S
−→ S−modules

that is called extension of scalars.

2.11.10. Corollary.locistensor Let U and V be modules over a domain R and let s be a nonzero element of R. Let

Rs, Us, Vs be the (simple) localizations of R,U, V , respectively (see 2.9.10).

(i) There is a canonical isomorphism Us ≈ U ⊗RRs.

(ii) Localization is compatible with tensor product: Us ⊗Rs
Vs ≈ (U ⊗R V )s �

(2.11.11)fibremodule fibres of a module

Let I be an ideal of a finite-type domain A, and let A = A/I . Also, let U be an A-module, and let UI be

the submodule generated by products uα with u in U and α in I . Tensor product with U givews us a diagram

U ⊗A I −−−−→ U ⊗A A −−−−→ U ⊗A A −−−−→ 0
y

y≈

y≈

0 −−−−→ UI −−−−→ U −−−−→ U/UI −−−−→ 0

in which the left vertical arrow is surjective.

If I is the maximal ideal mp at a point p of X = SpecA, then A is the residue field k(p) at p, and

U ⊗A k(p) is the k(p)-module obtained from U by extension of scalars. We call this k(p)-module the fibre of

U at p, and we denote it by U(p). Then there is an exact sequence

(2.11.12) 0→ Ump → U → U(p)→ 0Utensorktwo
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that we use to identify the fibre U(p) as U/Ump = U ⊗A k(p).

The support of a finite A-module U is the set of points p such that the fibre U(p) at p isn’t zero. The

support of a finite module is a closed subset of X = SpecA.

(2.11.13)tensoral-

gebras

tensor product algebras

If A and B are algebras over a ring R, the tensor product module A ⊗RB is made into an R-algebra with

multiplication law

(α1 ⊗ β1) · (α2 ⊗ β2) = (α1α2)⊗ (β1β2)

and its multiplicative identity is 1⊗1. One must show compatibility of multiplication with the bilinear relations.

Since this is easy, we’ll do one verification as an example. We know that (α1+α′
1)⊗β1 = α1⊗β1+α′

1⊗β1,

so we must show that

(
(α1 + α′

1)⊗ β1

)
·
(
α2 ⊗ β2

)
=

(
α1 ⊗β1

)
·
(
α2 ⊗β2

)
+
(
α′

1 ⊗β1

)
·
(
α2 ⊗β2

)

Using the definition of multiplication, what is to be shown is that (α1 + α′
1)α2 ⊗ β1β2 = α1α2 ⊗ β1β2 +

α′
1α2 ⊗β1β2, which is true.

2.11.14. Proposition.tensorprop-

erty

(mapping property of tensor product algebras) Let A,B, and S be R-algebras. Alge-

bra homomorphisms from A⊗RB to S correspond bijectively to pairs of algebra homomorphisms from A and

B to S:

HomR(A⊗RB,S) ≈ HomR(A,S)×HomR(B,S).

proof. We note first that sending α  α ⊗ 1 defines an R-algebra homomorphism A → A ⊗RB. This is

pretty clear: (α + α′) ⊗ 1 = α ⊗ 1 + α′ ⊗ 1, (αα′) ⊗ 1 = (α ⊗ 1)(α′ ⊗ 1), and (rα) ⊗ 1 = r(α ⊗ 1).
Similarly, β  1 ⊗β defines an R-algebra homomorphism B → A ⊗RB. This being so, an R-algebra

homomorphism A⊗RB → S gives us homomorphisms A→ S and B → S by composition. Conversely, let

algebra homomorphisms A
f
−→ S and B

g
−→ S be given. We define A⊗RB

ϕ
−→ S by ϕ(α⊗β) = f(α)g(β).

To show that ϕ is well-defined, one must verify the bilinear relations. We verify one as example:

ϕ(a⊗ b) + ϕ(a′ ⊗ b) = f(a)g(b) + f(a′)g(b) = f(a+ a′)g(b) = ϕ((a+ a′)⊗ b)

Then ϕ is a homomorphism because

ϕ(a1 ⊗ b1)ϕ(a2 ⊗ b2) = f(a1)g(b1)f(a2)g(b2) = f(a1a2)g(b1b2) = ϕ(a1a2 ⊗ b1b2) �

(2.11.15)prodaffvar products of affine varieties

Let X = SpecA and Y = SpecB be affine varieties, and say that the coordinate rings are presented as

A = C[x1, ..., xm]/(f1, ..., fk) and B = C[y1, ..., yn]/(g1, ..., gℓ). So X and Y are subvarieties of Am and

A
n, respectively. In the product space A

m+n with coordinates x, y, the product X×Y of the two varieties is

the locus

f1(x) = · · · = fk(x) = g1(y) = · · · = gℓ(y) = 0.

It is an affine variety whose coordinate ring is C[x.y]/(f(x), g(y)). The algebra C[x, y]/
(
(f(x), g(y)

)
is

isomorphic to the tensor product A⊗C B.

2.11.16. Corollary.tensorfg Let A = C[x]/(f) and B = C[y]/(g). Then the product variety SpecA× SpecB is

isomorphic to the affine variety SpecA⊗C B. �
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